×
27.08.2016
216.015.500a

Результат интеллектуальной деятельности: СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиотехнике и может быть использовано в наземных приемно-регистрирующих станциях телеметрической информации. Технический результат - повышение помехоустойчивости приема телеметрической информации. Для этого система символьной синхронизации радиотелеметрических средств работает в частотно-временной области и заключается в применении контура двухуровневой обработки входного сигнала. На первом уровне осуществляется поиск границ следования двоичных символов с использованием образов, полученных на основе расчета спектральной плотности мощности фрагмента анализируемого сигнала и вычислении коэффициента корреляции образов с эталонным спектральным образом, соответствующим границе двоичных символов. На втором уровне с использованием двухканальной вычитающей схемы демодулятора. Затем производится расчет спектрального образа и сравнение его со спектральным образом символа на основе вычисления коэффициента корреляции. В результате процессы демодуляции и поиска границ двоичных символов переносятся из временной области в частотно-временную область. 12 ил.
Основные результаты: Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой, основанный на определении границ двоичных символов кодовой последовательности и демодуляции принятых информационных символов, отличающийся тем, что процесс символьной синхронизации осуществляют в частотно-временной области с применением контура двухуровневой обработки сигнала, использующего алгоритм расчета спектральной плотности мощности дискретизированного радиосигнала, где на первом уровне обработки осуществляют поиск границ двоичных символов, основанный на вычислении коэффициентов корреляции спектральных образов с эталонным спектральным образом границы символов «01», вырабатывают строб-сигналы, подаваемые на инерционный генератор символьной частоты, а на втором уровне обработки сигнала осуществляют демодуляцию двоичных символов на основе вычисления коэффициентов корреляции спектральных образов, получаемых после вычитания из принимаемого символа опорного сигнала с эталонным спектральным образом символа.

Изобретение относится к радиотехнике и может быть использовано в наземных приемно-регистрирующих станциях телеметрической информации.

С развитием ракетно-космической техники к радиотелеметрическим системам предъявляются все более высокие требования в отношении надежности и достоверности получения телеметрической информации. Основными причинами, влияющими на снижение достоверности получения данных телеизмерений, являются потеря и искажение телеметрической информации при малых отношениях сигнал/шум. Поэтому одним из главных направлений развития радиотелеметрических систем является разработка методов передачи и приема телеметрической информации, позволяющих обеспечить требуемую достоверность данных о функционировании бортовой аппаратуры объектов ракетно-космической техники при передаче информации по радиоканалу. Анализ процессов передачи и приема телеметрической информации по радиоканалу показал, что важным элементом, влияющим на качество приема информации, является система символьной синхронизации, которая решает задачи демодуляции и определения границ двоичных символов в групповом телеметрическом сигнале. В работах [1-3] указано, что наиболее распространенным подходом при построении систем синхронизации является шаговый поиск, основанный на анализе точек неопределенности. Вместе с тем в работе [4] подчеркнуто, что шаговый поиск и синхронизация с использованием быстрых спектральных преобразований являются универсальными методами и поэтому пригодны для любой системы. Но в данной работе они рассматриваются как отдельные методы. Перенос процесса синхронизации из временной области в частотно-временную область позволяет объединить эти два метода.

В настоящее время все существующие способы синхронизации в информационно-телеметрических системах реализованы во временной области. Разработка способа символьной синхронизации в частотно-временной области является перспективным направлением развития методов приема и обработки телеметрической информации, позволяющим повысить помехоустойчивость приема результатов телеизмерений. Анализ способов показал возможность проведения обработки сигнала в частотно-временной области [5-7]. Указанные патенты описывают способы, основанные на использовании преобразования Фурье, вейвлет-анализа, нейронных сетей, применяемые для демодуляции сигнала. Вопросы синхронизации данные способы не раскрывают.

Известен способ и система для передачи и приема сигналов [5]. Изобретение раскрывает способы и устройство работы приемника OFDM сигналов. В передаваемом сигнале используют пилот-сигналы для демодуляции символов информационного сообщения. Вхождение в синхронизации по символам в данном способе осуществляется на основе расчета быстрого преобразования Фурье и нахождения корреляции над защитными интервалами символов [5].

Данный способ применяется для синхронизации сигналов с ортогональным частотным разделением и имеющих в своем составе защитные интервалы между символами. Его недостатком является то, что он не применим для структуры символьной синхронизации группового телеметрического сигнала с модуляцией КИМ2-ФМ.

В работе [6] предлагается способ распознавания сигналов, основанный на быстром преобразовании Фурье.

Данный подход имеет недостаток, выраженный в применении нескольких контуров подстройки при полном распознавании входного сигнала. Это приводит к невозможности обработки сигналов в режиме непосредственного приема информации.

Наиболее близким по п. 1 формулы для решения вопросов синхронизации в информационно-телеметрических системах является способ распознавания и демодуляции сигнала с неизвестной структурой [7], который выбран в качестве прототипа. Данный подход к распознаванию и демодуляции сигнала основан на применении контура двухуровневой обработки сигнала. Вначале осуществляется первичная вейвлет-обработка для грубой оценки параметров сигнала (максимальная, минимальная амплитуда и частота), присутствия фазовых искажений. Для точного определения параметров сигнала применяется вторичный анализ нейронными сетями и автоматическая подстройка под каждый тип входного сигнала. Достигаемым техническим результатом является определение параметров и демодуляция сигнала с неизвестной структурой на основе самообучающейся нейронной сети. При этом точность обработки сигнала ограничена шумовыми составляющими входного сигнала [7]. Данный способ может быть использован для решения задачи повышения устойчивости синхронизации. Его недостатками является сложность разработки формализованных алгоритмов настройки и определения оптимальной структуры нейронной сети, а также необходимость больших вычислительных затрат при проведении вейвлет-обработки.

В предлагаемом способе по аналогии с прототипом осуществляется распознавание границ символов и демодуляция информационного телеметрического сигнала модуляцией КИМ2-ФМ с использованием контура двухуровневой обработки сигнала. В данном способе для устранения недостатков прототипа вместо вейвлет преобразований и нейронной сети используется анализ спектральной плотности мощности фрагментов сигнала, с помощью которого из мгновенного спектра сигнала получают информацию, необходимую для определения границ символов и демодуляции информационного сообщения в режиме непосредственного приема информации. Аналитическое представление сигнала модуляцией КИМ2-ФМ с π-манипуляцией описывается следующей математической формулой:

где f0 - несущая частота сигнала;

φm - значения фаз манипуляции двоичных символов группового телеметрического сигнала.

При двоичном кодировании в сигнале КИМ2-ФМ фазы манипуляции принимают значения 0 и π.

Графический вид смоделированного в среде Matlab R2009a сигнала модуляции КИМ2-ФМ с π-манипуляцией изображен на фиг. 1.

На фиг. 2 представлен сигнал с модуляцией КИМ2-ФМ, искаженный шумом, при отношении сигнал/шум 0 дБ.

Основным методом, позволяющим разделить двоичные символы группового телеметрического сигнала на классы и отделить их от шумов, является селекция сигнала. Аппаратом, способным выполнить селекцию сигнала, является теория цифровой обработки сигналов. Из работы [8] видно, что для решения задачи селекции сигнала целесообразно использовать методы спектрального и частотно-временного анализа сигнала.

При использовании данных методов групповой телеметрический сигнал представляется в частотной области. В предлагаемом способе перенос процесса символьной синхронизации из временной области в частотно-временную область осуществляется на основе вычисления мгновенного спектра. Простейшее определение мгновенного спектра может быть дано в следующем виде [9]:

где u(τ) - фрагмент анализируемого сигнала в интервале времени от t0 до t;

ω - угловая частота;

τ - длительность анализируемого фрагмента сигнала.

В соответствии с выражением (2) мгновенный спектр определен как спектр отрезка процесса длительностью τ. Согласно данному определению применяется «скользящее» интегрирование: интервал интегрирования имеет постоянную длину, но перемещается по оси времени.

В связи с различиями в оценивании параметров сигнала, получаемых при разных методах спектрального и частотно-временного анализа, проведено моделирование и оценка возможности их применения для поиска границ и демодуляции двоичных символов группового телеметрического сигнала в среде Matlab R2009a с использованием модели радиосигнала (1). При этом частота высокочастотного заполнения двоичных символов была кратно уменьшена, длительность символов составляла 0,01 с, на длительности двоичного символа содержалось 100 дискретных отсчетов. В результате моделирования определено, что предлагаемый способ символьной синхронизации должен основываться на анализе спектральной плотности мощности сигнала, вычисляемой по формуле

где Uτl(ω,t) - мгновенный спектр 1-й реализации анализируемого сигнала, полученный по формуле (2);

- комплексно-сопряженная копия мгновенного спектра l-й реализации анализируемого сигнала.

На фиг. 3 и 4 представлен вид спектральной плотности мощности фрагмента сигнала, являющегося границей двоичных символов сигнала модуляции КИМ2-ФМ, без воздействия шума на сигнал и искажения сигнала шумом (отношение сигнал/шум 0 дБ) соответственно, при этом спектральный образ границы символов содержит по 50 дискретных отсчетов символов «0» и «1».

Из фиг. 4 видно, что при воздействии на сигнал аддитивного белого гауссовского шума с мощностью, соизмеримой с мощностью сигнала, спектральная плотность мощности искажается незначительно.

В предлагаемом способе по аналогии с прототипом процесс демодуляции и определения границ двоичных символов осуществляется как процесс классификации образов.

В соответствии с постановкой задачи классификации обозначим:

- Λ - множество объектов распознавания, при этом Λ разделено на классы Λ1 и Λ2, соответствующие границе символов и отсутствию границы соответственно, и Λ3, Λ4, соответствующие номиналам двоичных символов «0», «1» соответственно;

- λτlτl∈Λ - объекты распознавания (образы).

Особенностью сигнала модуляцией КИМ2-ФМ с π-манипуляцией является отсутствие различий в образах символов «0» и «1», получаемых на основе расчета спектральной плотности мощности.

На фиг. 5 представлен спектральный образ, соответствующий двоичным символам «0» и «1».

Для устранения данного недостатка применяется двухканальная схема вычитания из принимаемого сигнала опорного сигнала с той же частотой, что и принимаемый сигнал. При этом в первом канале фаза опорного сигнала равна 0, а во втором π. В случае совпадения принимаемого сигнала с опорным по фазе на выходе устройства вычисления спектральной плотности мощности значения амплитуд спектральных составляющих при отсутствии шума равны нулю.

На фиг. 6 и 7 соответственно изображен вид спектральной плотности мощности на выходе двухканальной схемы вычитания при отсутствии шумов и в случае искажения принимаемого сигнала шумом (отношение сигнал/шум 0 дБ).

При появлении погрешности определения границы двоичных символов на выходе канала, в котором фаза опорного сигнала совпадает с фазой принимаемого сигнала, полученный спектральный образ имеет ширину спектра, превышающую ширину спектра эталонного спектрального образа двоичного символа. Это поясняется тем, что ширина спектра зависит от длительности импульса и показывает, что в анализе используется часть длительности символа противоположного номинала.

Результаты моделирования данного явления представлены на фиг. 8.

В предлагаемом способе символьной синхронизации процесс демодуляции и определения границ двоичных символов основывается на отнесении, полученных при анализе сигнала спектральных образов к одному из классов. При этом в связи с особенностями спектральных образов двоичных символов сигнала модуляцией КИМ2-ФМ с π-манипуляцией классы Λ3 и Λ4 объединяются в один класс Λ3.

В качестве классификатора в предлагаемом способе используется корреляционный классификатор, являющийся наиболее простым в реализации. При этом численную оценку связи спектральных образов дает расчет коэффициента линейной корреляции. Среди различных вариантов расчета коэффициента корреляции в данном способе целесообразнее всего использовать парный коэффициент корреляции, рассчитываемый по формуле

где uτ - неискаженные спектральные образы двоичных символов и их границы;

λτq - анализируемый спектральный образ фрагмента сигнала, q=1,2…,l.

Расчеты по формуле (4) показали, что эффективным способом классификации при определении границы двоичных символов является достижение максимального значения коэффициента парной корреляции.

На фиг. 9 представлено схематическое изображение способа символьной синхронизации в частотно-временной области сигнала модуляцией КИМ2-ФМ с π-манипуляцией, где:

ПР - приемник;

ПЧ - преобразователь частоты;

КП - контур подстройки;

Д - дискретизатор;

Г1 - генератор частоты дискретизации;

ОГ - генератор опорного сигнала;

PC - регистр сдвига;

«01» - устройство хранения частотных составляющих перепада символов;

РУ - решающее устройство;

УВ «0» - устройство вычитания из принимаемого сигнала опорного сигнала в канале определения символа «0»;

УВ «1» - устройство вычитания из принимаемого сигнала опорного сигнала в канале определения символа «1»;

УВМС - устройство вычисления мгновенного спектра;

УВКК - устройство вычисления коэффициента корреляции;

ОС - образ символа;

Г2 - генератор символьной частоты;

УСПР - устройство сравнения и принятия решения;

УФКП - устройство формирования кодовой последовательности.

В соответствии со схемой способа выполняется следующая последовательность действий:

1. Групповой телеметрический сигнал модуляции КИМ2-ФМ с π-манипуляцией поступает на вход приемного устройства.

2. В приемном устройстве сигнал подвергается фильтрации и переносу на промежуточную частоту.

3. В контуре подстройки вычисляется доплеровский сдвиг частоты. Значения доплеровского сдвига частоты передаются на устройства хранения частотных образов символа и перепада символов, где значения спектральных составляющих информационного символа пересчитываются с учетом доплеровского сдвига, а также значение доплеровского сдвига частоты учитывается при формировании опорного сигнала.

4. В дискретизаторе радиосигнал промежуточной частоты дискретизируется в соответствии с частотой, вырабатываемой генератором частоты дискретизации. В результате групповой телеметрический сигнал представляет собой дискретную последовательность {u(k)(i)}, где k=1, 2, …, n из i=1, 2, …, L отсчетов, являющихся отдельными символами информационных сообщений.

5. Значения дискретных отсчетов поступают на входы регистров сдвига демодулятора и устройства определения границ символов.

6. В устройстве определения границ символов регистр сдвига формирует множество фрагментов сигнала на основе подискретного сдвига принимаемой последовательности uτ1={u(1)(i)}, uτ2={u(1)(2, …, L), u(2)(1)}, uτ3={u(1)(3, …, L), u(2)(1, 2)},…,uτ1={u(k)(i), где i=1, 2, …, L является количеством дискретных отсчетов на один символ. После этого в устройстве вычисления мгновенного спектра производится расчет по формуле (3) спектральных образов фрагментов сигнала, представляющих собой объекты распознавания λτ1, λτ2, …, λτq, где q=1, 2, …, l.

7. В устройстве сравнения и принятия решения производится вычисление по формуле (4) коэффициента парной линейной корреляции между неискаженным спектральным образом границы символов uτ и спектральными образами фрагментов группового телеметрического сигнала. Принятие решения о наличии границы двоичных символов группового телеметрического сигнала осуществляется по следующему условию:

8. Определив моменты времени, соответствующие границе символов, устройство сравнения и принятия решения вырабатывает строб-сигналы, подаваемые на вход инерционного генератора символьной частоты Г2.

9. В инерционном генераторе символьной частоты Г2 формируются опорные импульсы символьной синхронизации, соответствующие границе символов. Импульсы символьной синхронизации подаются на устройство формирования кодовой последовательности.

10. После определения границ символов решающее устройство настраивает регистр сдвига демодулятора на анализ дискретных отсчетов, соответствующих длительности двоичного символа. Количество дискретных отсчетов определяется решающим устройством таким образом, чтобы в их число не вошли дискретные отсчеты двоичного символа противоположного номинала.

11. Дискретная последовательность {u(k)(i)}, где k=1, 2, …, n из i=1, 2, …, L отсчетов, являющихся отдельными символами информационных сообщений, поступает на входы устройств вычитания двух каналов определения номиналов символов.

12. В устройствах вычитания осуществляется подискретное вычитание из принимаемых дискретных отсчетов символов дискретных отсчетов опорного сигнала. Если в одном из каналов фаза принимаемого символа совпадет с фазой опорного сигнала, то при вычитании дискретные отсчеты выходного сигнала с устройства вычитания равны 0. Если в одном из каналов фаза принимаемого символа не совпадает с фазой опорного сигнала, то при вычитании амплитуда дискретных отсчетов выходного сигнала увеличивается в 2 раза.

13. Устройство вычисления мгновенного спектра демодулятора вычисляет мгновенный спектр выходного сигнала с устройств вычитания каналов определения символов.

14. В устройствах вычисления коэффициентов корреляции производится вычисление по формуле (4) коэффициента парной линейной корреляции между неискаженным спектральным образом символа и спектральными образами получаемых в каналах определения номиналов символов.

15. Устройство сравнения и принятия решения демодулятора принимает решение о приеме символа «0», если значение коэффициента корреляции в канале определения «1» больше, чем значение коэффициента корреляции в канале определения «0». Принятие решения о приеме символа «1» происходит, если значение коэффициента корреляции в канале определения «0» больше, чем значение коэффициента корреляции в канале определения «1».

16. Устройство сравнения и принятия решения демодулятора выдает решение о номинале принимаемого символа на устройство формирования кодовой последовательности.

17. В инерционном генераторе символьной частоты формируются опорные импульсы символьной синхронизации, соответствующие границе символов путем выделения из последовательности импульсов, управляющих дискретизацией непрерывного входного радиосигнала, полученных от генератора частоты дискретизации в моменты времени получения стробирующих сигналов. Импульсы символьной синхронизации подаются на устройство формирования кодовой последовательности. Инерционность генератора символьной частоты обусловлена необходимостью сохранения символьной частоты при приеме кодовых комбинаций с набором символов одинакового значения, когда границу символа определить невозможно.

18. Устройство формирования кодовой последовательности формирует двоичные импульсы видеочастоты с длительностью, определяемой инерционным генератором символьной частоты.

19. С выхода устройства формирования кодовой последовательности информация в виде двоичного кода в сопровождении импульсов символьной частоты поступает в контур дальнейшей обработки информации.

Показателем, характеризующим качество работы предлагаемого способа символьной синхронизации, является средняя вероятность ошибочного приема символов в тех случаях, когда погрешность оценки временной задержки принимаемых символов изменяется случайным образом, описываемая выражением

где ε - погрешность оценки временной задержки принимаемых символов;

W(ε) - плотность вероятности распределения случайной величины ε;

Р(ε) - вероятность ошибки приема символа.

В существующих способах символьной синхронизации, реализованных во временной области для обеспечения вероятности ошибки приема символа порядка 10-4, значение нестабильности символьной частоты υε не должно превышать 0,1. При этом данное значение υε может быть легко достигнуто при отношении сигнал/шум на входе системы более 7 дБ.

Целью разработки перспективных систем символьной синхронизации является минимизация вышеуказанной средней вероятности ошибочного приема символов. В работе [10] формула (5) преобразована к следующему виду:

P(vε)=P(0)+ΔP(vε),

где Р(0) - вероятность ошибочного приема двоичных символов при ε=0;

ΔР(υε) - средняя величина, на которую возрастает вероятность ошибочного приема двоичных символов при наличии случайной погрешности ε оценки временной задержки τ;

υεε/τ - относительное среднеквадратическое значение, характеризующее нестабильность символьной частоты.

На фиг. 10 приведены результаты расчетов значений υε, полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.

На фиг. 11 изображены результаты расчетов значений вероятности ошибочного приема двоичных символов Р(0), полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.

На фиг. 12 представлены результаты расчетов значений средней вероятности ошибочного приема символов в тех случаях, когда погрешность оценки временной задержки принимаемых символов изменяется случайным образом, полученных при моделировании работы предлагаемого способа в среде моделирования Matlab R2009a.

Результаты расчетов показывают, что предлагаемый способ символьной синхронизации является более эффективным по сравнению с существующими при работе в условиях малого отношения сигнал/шум.

Техническим результатом изобретения является способ символьной синхронизации наземной приемно-регистрирующей аппаратуры телеметрической информации при приеме сигнала с модуляцией КИМ2-ФМ в частотно-временной области.

Новизна изобретения заключается в новом подходе к процессу символьной синхронизации, переносу процесса синхронизации из временной области в частотно-временную область.

Изобретательский уровень характеризуется применением известного ранее математического аппарата теории распознавания образов и цифровой обработки сигналов для решения задачи по поиску границ и демодуляции двоичных символов группового телеметрического сигнала при малом отношении сигнал/шум.

Промышленная применимость - данное изобретение является промышленно применимым при разработке перспективных наземных приемно-регистрирующих станций телеметрической информации, так как может быть реализовано на существующих программируемых логических интегральных схемах фирмы Altera.

Источники информации

1. Варакин Л.Е. Системы связи с шумоподобными сигналами. - М.: Радио и связь, 1985. - 384 с.

2. Журавлев В.И. Поиск и синхронизация в широкополосных системах. - М.: Радио и связь, 1986. - 240 с.

3. Стиффлер Дж.Дж. Теория синхронной связи: пер. с англ. - М.: Связь, 1975. - 487 с.

4. Лосев В.В. Бродская Е.Б. Коржик И.В. Поиск и декодирование сложных дискретных сигналов / Под ред. В.И. Коржика. - М.: Радио и связь, 1988. - 225 с.

5. Заявка RU 2010105688 С2, H04L 27/26, Способ и система для передачи сигналов, опубл. 27.08.2011.

6. Патент RU 2216748 С2, G01R 23/16, Способ распознавания сигналов систем радиосвязи, опубл. 20.11.2003.

7. Патент RU 2386165 С2, G06F 17/14, G06N 3/02, G01R 23/16, Способ определения структуры и демодуляции сигнала с неизвестной структурой, опубл. 10.04.2010.

8. Сергиенко А.Б. Цифровая обработка сигналов: учебное пособие / А.Б. Сергиенко. - 3-е изд. - Спб.: БХВ-Петербург, 2011. - 768 с.

9. Харкевич А.А. Спектры и анализ. - 4-е изд. - М.: Физматгиз, 1962. - 236 с.

10. Горяинов В.Т. Требования к точности тактовой синхронизации в системах передачи двоичной информации / В.Т. Горяинов // Известия вузов СССР - Радиоэлектроника. - 1970. - N 7. С. 787-798.

Способ символьной синхронизации при приеме сигнала кодоимпульсной модуляции - фазовой манипуляции с известной структурой, основанный на определении границ двоичных символов кодовой последовательности и демодуляции принятых информационных символов, отличающийся тем, что процесс символьной синхронизации осуществляют в частотно-временной области с применением контура двухуровневой обработки сигнала, использующего алгоритм расчета спектральной плотности мощности дискретизированного радиосигнала, где на первом уровне обработки осуществляют поиск границ двоичных символов, основанный на вычислении коэффициентов корреляции спектральных образов с эталонным спектральным образом границы символов «01», вырабатывают строб-сигналы, подаваемые на инерционный генератор символьной частоты, а на втором уровне обработки сигнала осуществляют демодуляцию двоичных символов на основе вычисления коэффициентов корреляции спектральных образов, получаемых после вычитания из принимаемого символа опорного сигнала с эталонным спектральным образом символа.
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
СПОСОБ СИМВОЛЬНОЙ СИНХРОНИЗАЦИИ ПРИ ПРИЕМЕ СИГНАЛА КОДОИМПУЛЬСНОЙ МОДУЛЯЦИИ - ФАЗОВОЙ МАНИПУЛЯЦИИ С ИЗВЕСТНОЙ СТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 636.
10.09.2015
№216.013.77de

Регулятор давления

Изобретение относится к устройствам пневмоавтоматики и может быть использовано в различных областях промышленности для понижения давления газа до заданной величины и автоматического поддержания заданного давления. Задачи изобретения - расширение возможностей, повышение надежности и уменьшение...
Тип: Изобретение
Номер охранного документа: 0002562275
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7931

Способ имитации радиолокационных целей

Изобретение относится к области радиотехники, в частности к технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов космическими...
Тип: Изобретение
Номер охранного документа: 0002562614
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.796c

Способ повышения безопасности полета при отказе двигателя

Изобретение относится к области летательных аппаратов. Способ повышения безопасности полета летательного аппарата при отказе двигателя, работающего в момент отказа на максимальном или форсажном режиме и расположенного на той плоскости крыла, на которую у летательного аппарата имеется...
Тип: Изобретение
Номер охранного документа: 0002562673
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7ba2

Преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией

Изобретение относится к области силовой преобразовательной техники. Технический результат заключается в улучшении массогабаритных показателей, КПД, в улучшении технологичности изготовления, повышении надежности, расширении функциональных возможностей. Для этого заявленное устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002563247
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bb6

Дистанционный взрыватель снарядов реактивных систем залпового огня

Изобретение относится к области военной техники, а точнее к дистанционным взрывательным устройствам (ДВУ) для снарядов реактивных систем залпового огня с кассетными или отделяемыми боевыми частями (БЧ). Сущность заявляемого изобретения заключается в том, что в дистанционный взрыватель,...
Тип: Изобретение
Номер охранного документа: 0002563267
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bf9

Способ неразрушающего контроля подповерхностной структуры полупрозрачных объектов

Изобретение относится к способу контроля состояния подповерхностной структуры оптически неоднородных объектов и может быть использовано при анализе вариаций плотности полупрозрачных твердых тел, жидкости и газов. Согласно способу целостность внутренней структуры полупрозрачных объектов...
Тип: Изобретение
Номер охранного документа: 0002563334
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c83

Способ защиты малоразмерного подвижного объекта от высокоточного оружия с лазерным наведением

Изобретение относится к области радиоэлектронной борьбы, а именно к способам защиты наземных малоразмерных подвижных объектов от высокоточного оружия с лазерным наведением. Способ защиты малоразмерного подвижного объекта включает обнаружение импульсов лазерного излучения, регистрацию их...
Тип: Изобретение
Номер охранного документа: 0002563472
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7dc9

Устройство восстановления работоспособности резервированной системы с помощью мажоритарных элементов

Изобретение относится к системам радиоавтоматики и автоматического управления, резервированных с помощью мажоритарных элементов. Технический результат - повышение вероятности безотказной работы. Устройство восстановления работоспособности системы, резервированной с помощью мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002563798
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e24

Цифровой обнаружитель радиосигналов в условиях шума неизвестной интенсивности

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002563889
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7e46

Модульная двигательная установка малой тяги

Изобретение относится к области ракетно-космической техники, а именно к двигательным установкам космических аппаратов и разгонных блоков. Модульная двигательная установка малой тяги содержит силовые рамы с закрепленными на них сферическими топливными баками с осями, имеющими наклон к оси...
Тип: Изобретение
Номер охранного документа: 0002563923
Дата охранного документа: 27.09.2015
Показаны записи 131-140 из 361.
10.09.2015
№216.013.770c

Устройство повышения разрешающей способности по дальности

Изобретение относится к радиолокации, может быть использовано для обеспечения высокой разрешающей способности по дальности на выходе приемного тракта радиолокационной станции. Технический результат - уменьшение вероятности ложной тревоги при разрешении целей. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002562065
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77de

Регулятор давления

Изобретение относится к устройствам пневмоавтоматики и может быть использовано в различных областях промышленности для понижения давления газа до заданной величины и автоматического поддержания заданного давления. Задачи изобретения - расширение возможностей, повышение надежности и уменьшение...
Тип: Изобретение
Номер охранного документа: 0002562275
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7931

Способ имитации радиолокационных целей

Изобретение относится к области радиотехники, в частности к технике радиоэлектронного подавления космических радиолокационных станций с синтезированной апертурой антенны (РСА). Достигаемый технический результат - снижение вероятности правильного обнаружения маскируемых объектов космическими...
Тип: Изобретение
Номер охранного документа: 0002562614
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.796c

Способ повышения безопасности полета при отказе двигателя

Изобретение относится к области летательных аппаратов. Способ повышения безопасности полета летательного аппарата при отказе двигателя, работающего в момент отказа на максимальном или форсажном режиме и расположенного на той плоскости крыла, на которую у летательного аппарата имеется...
Тип: Изобретение
Номер охранного документа: 0002562673
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7ba2

Преобразователь постоянного напряжения в трехфазное квазисинусоидальное с широтно-импульсной модуляцией

Изобретение относится к области силовой преобразовательной техники. Технический результат заключается в улучшении массогабаритных показателей, КПД, в улучшении технологичности изготовления, повышении надежности, расширении функциональных возможностей. Для этого заявленное устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002563247
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bb6

Дистанционный взрыватель снарядов реактивных систем залпового огня

Изобретение относится к области военной техники, а точнее к дистанционным взрывательным устройствам (ДВУ) для снарядов реактивных систем залпового огня с кассетными или отделяемыми боевыми частями (БЧ). Сущность заявляемого изобретения заключается в том, что в дистанционный взрыватель,...
Тип: Изобретение
Номер охранного документа: 0002563267
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bf9

Способ неразрушающего контроля подповерхностной структуры полупрозрачных объектов

Изобретение относится к способу контроля состояния подповерхностной структуры оптически неоднородных объектов и может быть использовано при анализе вариаций плотности полупрозрачных твердых тел, жидкости и газов. Согласно способу целостность внутренней структуры полупрозрачных объектов...
Тип: Изобретение
Номер охранного документа: 0002563334
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c83

Способ защиты малоразмерного подвижного объекта от высокоточного оружия с лазерным наведением

Изобретение относится к области радиоэлектронной борьбы, а именно к способам защиты наземных малоразмерных подвижных объектов от высокоточного оружия с лазерным наведением. Способ защиты малоразмерного подвижного объекта включает обнаружение импульсов лазерного излучения, регистрацию их...
Тип: Изобретение
Номер охранного документа: 0002563472
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7dc9

Устройство восстановления работоспособности резервированной системы с помощью мажоритарных элементов

Изобретение относится к системам радиоавтоматики и автоматического управления, резервированных с помощью мажоритарных элементов. Технический результат - повышение вероятности безотказной работы. Устройство восстановления работоспособности системы, резервированной с помощью мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002563798
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e24

Цифровой обнаружитель радиосигналов в условиях шума неизвестной интенсивности

Изобретение относится к радиотехнике и может быть использовано в панорамных приемниках станций радиопомех, радиопеленгаторах, средствах радиомониторинга и аналогичных устройствах для обнаружения источников радиоизлучения (ИРИ) в условиях шума неизвестной интенсивности. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002563889
Дата охранного документа: 27.09.2015
+ добавить свой РИД