×
27.08.2016
216.015.4fe1

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ СЛОИСТЫЙ МАТЕРИАЛ С КОМПЛЕКСНОЙ СИСТЕМОЙ АНТИКОРРОЗИОННОЙ ЗАЩИТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала с комплексной системой антикоррозионной защиты. Материал содержит чередующиеся друг с другом по меньшей мере один слой алюминиевого сплава с анодно-окисным покрытием и по меньшей мере один слой углепластика, состоящий из эпоксидного связующего и углеродных волокон, при этом содержит антикоррозионный слой, расположенный между слоем алюминиевого сплава и слоем углепластика и состоящий из наполнителя, антикоррозионного слоя из стеклоткани, ингибитора коррозии и вышеуказанного связующего. Изобретение обеспечивает коррозионную стойкость композиционного слоистого материала на основе алюминиевого сплава и углепластика при одновременном снижении плотности и повышение модуля упругости. 3 з.п. ф-лы, 7 пр., 1 табл.

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и может быть использовано в производстве изделий конструкционного назначения, например, обшивок фюзеляжа, створок, люков, рулей управления и стабилизаторов транспортных и пассажирских самолетов с целью уменьшения массы конструкций и увеличения срока эксплуатации при увеличении надежности и безопасности эксплуатации конструкции. Также применение материала возможно в машиностроительной и других отраслях промышленности, преимущественно для изделий городского и железнодорожного транспортов.

Создание материалов, позволяющих существенно снизить массу, повысить ресурс и безопасность эксплуатации конструкций - важная и не теряющая актуальности проблема в авиастроении. Традиционные методы совершенствования свойств авиационных материалов практически исчерпали свои возможности. Так, для металлических сплавов при увеличении прочности за счет оптимизации состава и структуры не удается добиться показателей выносливости и стойкости к усталостному разрушению необходимых для современных летательных аппаратов. Рост прочности обычно сопровождается повышением чувствительности к концентраторам напряжений, что может служить причиной преждевременного разрушения нагруженных конструкции.

Известны металлополимерные композиционные слоистые материалы, состоящие из слоев алюминиевого сплава и слоев полимерных композитов на основе стеклянных, арамидных или углеродных волокон (Статья "Glare technology development 1997-2000", J.W. Gunnink, A. Vlot, T.J. de Vries, W. van der Hoeven. - Chemistry and materials science, v. 9 №4 (2002), p. 201-219, 2002; статья "Development of fibre metal laminates: concurrent multi-scale modeling and testing", J. Sinke. - J Mater Sci, published online, Springer Science+Business Media 2006; статья "Residual strength of centrally cracked metal/fiber composite laminates" Z.-H. Jin, R.C. Batra, Materials science and engineering, A216, p. 117-124, 1996). Эти материалы имеют повышенные механические свойства по сравнению с листами алюминиевого сплава, а также обладают высокой трещиностойкостью при усталостном разрушении. В настоящее время за рубежом такие материалы применяются в конструкции самолетов гражданской авиации, в частности в конструкции самолетов фирмы Airbus (А-380, А-350).

Наиболее часто за рубежом используется слоистые металлополимерные композиционные материалы «алюминий - стеклопластик» под маркой GLARE. В Российской Федерации его аналогом являются материалы, выпускаемые под маркой СИАЛ. Слоистый материал СИАЛ содержит слои алюминиевого сплава и слои стеклопластика, армированного стеклянными волокнами (RU 2185964 С1, 27.07.2002). Недостатком СИАЛ и GLARE является низкое значение модуля упругости (60-70 ГПа), которое не превышает значения модуля упругости алюминиевых сплавов.

Известен композиционный слоистый материал АЛОР, который предназначен для изготовления элементов конструкции авиационной техники, например, для изготовления силовых деталей планера. Материал содержит слои алюминиевого сплава и слои органопластика, армированного высокопрочными арамидными волокнами (RU 2185963 С1, 27.07.2002).

Недостатком слоистого материала АЛОР является его склонность к поглощению влаги из-за способности арамидных волокон поглощать воду. Наличие влаги приводит к развитию коррозионных процессов, которые могут привести к разрушению слоистого материала.

Известен слоистый композиционный материал «алюминий-углепластик», содержащий слои углепластика, чередующиеся с ними слои алюминиевого сплава, защищенные анодно-окисным покрытием, сформированным в фосфорнокислотном электролите, и клей, с помощью которого вышеуказанные слои совмещены. Материал изготавливается за несколько технологических этапов (KR 20010053778 А, 02.07.2001).

Недостатком данного материала является наличие в нем высоких термических остаточных напряжений из-за различия коэффициентов линейного термического расширения слоев металла и углепластика, что может приводить к снижению механических и усталостных характеристик материала. Кроме того, в таком композите присутствуют дополнительные границы раздела между углепластиком и клеем, что уменьшает надежность материала.

Наиболее близким аналогом является слоистый композиционный материал, представляющий собой чередующиеся друг с другом слои углепластика, состоящего из связующего и углеродных волокон, и слои алюминиевого сплава с аноднооксидированной поверхностью, полученной в хромовокислотном электролите. Материал обладает следующими свойствами: модуль при растяжении - 72 ГПа, плотность - 2,3 г/см3 (Damping behavior of continuous fiber/metal composite materials by the free vibration method, Composites, part B: engineering, v. 37, E.C. Botelho, A.N. Campos, E. de Barros, L.C. Pardini, M.C. Rezende, pp. 255-263, 2006).

Существенным недостатком материала-прототипа является низкая коррозионная стойкость, обусловленная вероятностью возникновения гальванической коррозии вследствие различия химических потенциалов алюминиевого сплава и углепластика, которая может достигать 1,5 В. Наличие влаги усугубляет интенсивность контактной коррозии. Кроме того, процесс анодного оксидирования алюминиевого сплава в хромовокислотном электролите является экологически неблагоприятным, так как Cr6+ обладает канцерогенным эффектом и его использование опасно для окружающей среды.

Фосфорнокислотные и хромовокислотные анодно-окисные покрытия имеют недостаточно высокое электрическое сопротивление для предотвращения возникновения тока при контакте алюминиевого сплава и углепластика.

Технической задачей изобретения является создание композиционного слоистого материала на основе алюминиевого сплава и углепластика с повышенной коррозионной стойкостью и высокими механическими характеристиками.

Техническим результатом изобретения является обеспечение коррозионной стойкости композиционного слоистого материала на основе алюминиевого сплава и углепластика при одновременном снижении плотности и повышение модуля упругости.

Для достижения технического результата предложен композиционный слоистый материал, содержащий чередующиеся друг с другом по меньшей мере один слой алюминиевого сплава с анодно-окисным покрытием и по меньшей мере один слой углепластика, состоящий из связующего и углеродных волокон, при этом он также содержит антикоррозионный слой, расположенный между слоем алюминиевого сплава и слоем углепластика и состоящий из наполнителя антикоррозионного слоя, представляющего собой стеклоткань, ингибитора коррозии и вышеуказанного связующего, представляющего собой эпоксидное расплавное связующее.

Предпочтительным ингибитором коррозии является азотнокислый церий.

Слой алюминиевого сплава может иметь анодно-окисное покрытие, сформированное в комбинированном электролите, содержащем фосфорную и серную кислоты, и уплотненное в растворе ингибитора коррозии алюминиевых сплавов.

Предпочтительно, чтобы ингибитор коррозии алюминиевых сплавов для уплотнения анодно-окисного покрытия представлял собой смесь хромата циклогексила амина (ХЦА) и бензотриазола (БТА).

Для обеспечения коррозионной стойкости алюминиевого сплава в составе композита «алюминий-углепластик» в течение длительного хранения и эксплуатации, в процессе которых материал может подвергаться отрицательному воздействию климатических условий и различных коррозионных сред, необходимо исключить возможность возникновения электрохимического взаимодействия между слоями алюминиевого сплава и слоями углепластика. Для обеспечения коррозионной стойкости между указанными слоями был помещен антикоррозионный слой, состоящий из наполнителя, ингибитора коррозии и связующего, входящего в состав углепластика.

Использование антикоррозионных слоев с тем же связующим, что и в слое углепластика, упрощает технологический процесс изготовление композита и благоприятно влияет на свойства слоистого композиционного материла, такие как адгезия между слоями и механические характеристики. Кроме того, это позволяет создать градиентный переход между материалами различной химической природы и обладающими различными модулями упругости (алюминиевыми и углепластиковыми слоями). Это в свою очередь обеспечивает хорошее взаимодействие между слоями алюминиевого сплава и углепластика при механической нагрузке и уменьшает межслойные напряжения. Кроме создания градиентного перехода от углепластика к алюминиевому сплаву антикоррозионный слой обеспечивает надежную защиту алюминиевых слоев от электрохимической коррозии, предотвращая непосредственный контакт алюминиевого сплава и углепластика.

Наполнитель для антикоррозионного слоя должен обладать электроизоляционными свойствами. Чтобы сильно не повлиять на механические характеристики материала, его толщина должна быть небольшой. Структура наполнителя должна быть достаточно плотной для устранения поверхностного контакта между слоями алюминиевого сплава и углепластика. Наиболее предпочтительным наполнителем, удовлетворяющим все перечисленные требования, является стеклоткань.

Ингибитор коррозии включен в антикоррозионный слой в объеме, позволяющем уменьшить скорость коррозионных процессов при их возникновении.

Экспериментально установлено, что возникновение коррозионных процессов наилучшим образом предотвращает или снижает их скорость наличие в антикоррозионном разделительном слое ингибитора коррозии азотнокислый церий.

Использование в качестве ингибитора коррозии азотнокислого церия не вызывает больших технологических трудностей благодаря хорошей растворимости на этапе нанесения ингибитора коррозии на наполнитель антикоррозийного слоя.

Для повышения прочности материала лучше использовать слои из высокопрочных алюминиевых сплавов.

Для того чтобы материал отвечал требованиям качества, таким как монолитность, отсутствие пор и расслоений, предпочтительно, чтобы объемное содержание связующего в слое углепластика составляло 35-45%.

Анодно-окисное покрытие (аноднооксидированная поверхность) необходимо для снижения коррозионной активности на поверхности алюминиевого сплава и для повышения адгезии между слоями, при этом его лучше получать путем обработки в комбинированном электролите, содержащем серную и фосфорную кислоты, с последующим уплотнением аноднооксидированной поверхности ингибитором коррозии алюминиевых сплавов.

Данный электролит является более экологически безопасным по сравнению с токсичным электролитом, содержащим хромовую кислоту, который использовался в прототипе.

В качестве ингибитора коррозии алюминиевых сплавов для уплотнения анодно-окисного покрытия лучше использовать смесь хромата циклогексила амина (ХЦА) и бензотриазола (БТА).

В отличие от органических ингибиторов коррозии эти вещества являются синтетическими, что обеспечивает стабильность свойств.

Для изготовления заявляемого металлополимерного композиционного материала используется метод совместного формования пакета, состоящего из слоев алюминиевого сплава, слоев углеродного наполнителя, пропитанных связующим, и слоев наполнителя, предпочтительно стекловолокна, пропитанных связующим и ингибитором коррозии.

Изготовление материала за одну технологическую операцию позволяет получать более монолитный и стабильный материал с менее дефектной структурой.

Примеры осуществления.

Образцы из композиционного слоистого материала получали методом автоклавного формования по ступенчатому режиму отверждения с последующим охлаждением.

В таблице 1 приведены составы слоистого композиционного материала по примерам 1-5.

Для защиты поверхности алюминиевого сплава аноднооксидированную поверхность получали в комбинированном электролите, содержащем фосфорную и серную кислоту. Уплотнение аноднооксидированной поверхности проводили в растворе хромата циклогексила амина (ХЦА) и бензотриазола (БТА).

Пример 1.

Был изготовлен композиционный слоистый материал, состоящий из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, расположенных между ними двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 и четырех разделительных слоев стеклопластика толщиной 0,02 мм, пропитанных ингибитором коррозии азотнокислым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Были проведены испытания полученного материала на механические характеристики.

Плотность образцов оценивалась согласно ГОСТ 15139-69. Испытание прочности и модуля упругости при растяжении проводили согласно ГОСТ 25.601-80. Испытание на скорость роста трещины усталости (СРТУ) образцов проводили по ГОСТ 25.506-85.

Изученный пример осуществления изобретения показал высокие механические характеристики: среднее значение прочности у испытанных образцов при растяжении составил 1050 МПа, модуль упругости при растяжение составил 95 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔК=31 МПа*м1/2 составила 0,03. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Пример 2.

Был изготовлен композиционный слоистый материал, состоящий из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, расположенных между ними двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м2 и четырех разделительных слоев стеклопластика толщиной 0,06 мм, пропитанных ингибитором коррозии азотнокислым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжение входит в диапазон 40÷55 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔК=31 МПа*м1/2) ровна 0,05. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Пример 3.

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,02 мм, пропитанных ингибитором коррозии азотнокислым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 1000÷1100 МПа, модуль упругости при растяжение входит в диапазон 90÷100 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔK=31 МПа*м1/2) ровна 0,03. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Пример 4.

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,06 мм, пропитанных ингибитором коррозии азотнокислым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷600 МПа, модуль упругости при растяжение входит в диапазон 40÷60 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔK=31 МПа*м1/2) ровна 0,05. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Пример 5.

Композиционный слоистый материал состоит: из двух листов алюминиевого сплава Д16-АТ (ГОСТ 4784-84) толщиной 1 мм, одного слоя углепластика толщиной 0,14 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с двумя разделительными слоями стеклопластика толщиной 0,02 мм, пропитанных ингибитором коррозии хлористым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжении входит в диапазон 65÷70 ГПа. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,7 г/см.

Пример 6.

Был изготовлен композиционный слоистый материал, состоящий из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, расположенных между ними двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 и четырех разделительных слоев стеклопластика толщиной 0,02 мм, пропитанных ингибитором коррозии сернокислым церием. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Были проведены испытания полученного материала на механические характеристики.

Плотность образцов оценивалась согласно ГОСТ 15139-69. Испытание прочности и модуля упругости при растяжении проводили согласно ГОСТ 25.601-80. Испытание на скорость роста трещины усталости (СРТУ) образцов проводили по ГОСТ 25.506-85.

Изученный пример осуществления изобретения показал высокие механические характеристики: среднее значение прочности у испытанных образцов при растяжении составил 1050 МПа, модуль упругости при растяжение составил 95 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔK=31 МПа*м1/2 составила 0,03. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Пример 7.

Был изготовлен композиционный слоистый материал, состоящий из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, расположенных между ними двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м2 и четырех разделительных слоев стеклопластика толщиной 0,06 мм, пропитанных смесью ингибиторов коррозии хроматциклогексиламином и бензотриазолом. Углепластик и разделительные слои содержали эпоксидное расплавное связующее ВСЭ-34.

Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжение входит в диапазон 40÷55 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔK=31 МПа*м1/2) ровна 0,05. Все вышеуказанные значения механических характеристик соответствовали плотности материала 2,2 г/см3.

Далее в соответствии с ГОСТ 9.905 и ГОСТ 9.308 были проведены коррозионные испытания в камере солевого тумана. Для проведения испытаний использовали камеру объемом 1,5 м3. Испытания проводили при непрерывном распылении профильтрованного раствора хлористого натрия концентрации 55 г/л, приготовленного на дистиллированной воде с рН=7, температуре 36°С и относительной влажности 98%. Образцы в камере располагались под углом 30° к вертикали. Солевой туман свободно циркулировал вокруг всех образцов. Испытания проводили непрерывно в течение 1200 часов.

У всех примеров изобретения отсутствовали какие-либо признаки поражения слоев алюминия электрохимической коррозией. В качестве алюминиевого слоя может быть использованы другие алюминиевые сплавы (например, сплавы 1163, 1420 и др.).

Таким образом, можно сделать вывод, что предложенный композиционный слоистый материал при его низкой плотности обладает высоким модулем упругости, а также высокой коррозионной стойкостью в течение длительного времени.

Источник поступления информации: Роспатент

Показаны записи 311-320 из 367.
09.05.2019
№219.017.4b7a

Способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к термической обработке изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе. Предложен способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002256723
Дата охранного документа: 20.07.2005
09.05.2019
№219.017.4b7e

Жаростойкий сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаростойким сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как, например, рабочие и сопловые лопатки, проставки соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002256714
Дата охранного документа: 20.07.2005
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.544d

Огнестойкая термопластичная композиция и изделие, выполненное из нее

Изобретение относится к огнестойкой термопластичной композиции на основе поликарбоната. Композиция содержит, мас.ч.: поликарбонат 81-92, модифицированный полибутилентерефталат 7-15, декабромдифенилоксид, модифицированный терефталевой кислотой 1-4. Также изобретение относится к изделию....
Тип: Изобретение
Номер охранного документа: 0002283327
Дата охранного документа: 10.09.2006
18.05.2019
№219.017.55ed

Способ получения защитного покрытия на изделии из бериллия и его сплавов

Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из...
Тип: Изобретение
Номер охранного документа: 0002344098
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5814

Полимерная композиция для покрытий

Изобретение относится к полимерным композициям, применяемым в качестве радиопрозрачных атмосферостойких покрытий холодного отверждения по лакокрасочным покрытиям и полимерным композиционным материалам. Композиция включает следующее соотношение компонентов, в мас.ч.: 9,8-23,5 сополимера...
Тип: Изобретение
Номер охранного документа: 0002333925
Дата охранного документа: 20.09.2008
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
Показаны записи 311-320 из 338.
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
+ добавить свой РИД