×
20.08.2016
216.015.4edc

Результат интеллектуальной деятельности: СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ ИЗ (α+β) ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке полуфабрикатов из титановых сплавов, и может быть использовано в авиакосмической технике. Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов заключается в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с. Затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C. Последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения, со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе. Полученная структура сплава характеризуется сверхмелким зерном и однородной морфологией структурных составляющих. Сплав имеет высокие значения предела выносливости и малоцикловой усталости. 1 табл., 3 пр.
Основные результаты: Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, заключающийся в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.

Изобретение относится к области металлургии, в частности к способу высокотемпературной термомеханической обработки полуфабрикатов из (α+β)-титановых сплавов, и может быть использовано в машиностроении и авиационной технике.

Как известно, термомеханические параметры обработки давлением титановых сплавов, наряду с легированием, являются главными для обеспечения требуемого уровня механических свойств и эксплуатационных характеристик, их стабильности и анизотропии, гарантией отсутствия преждевременного разрушения.

Известен способ высокотемпературной термомеханической обработки, заключающийся в нагреве до температуры на 50-100°C ниже температуры полиморфного превращения, деформации на 50%, охлаждении в воде и последующим старением в течение 10 ч (Бернштейн М.Л., Термомеханическая обработка металлов и сплавов, т. 2, М., Металлургия, 1968, с. 1153).

Однако, после такой обработки предел выносливости (σ-1 на базе 107 циклов) и малоцикловая усталость (МЦУ) не достигают требуемого уровня (σ-1≥44 кгс/мм2, МЦУ≥100000 циклов при σmax=70 кгс/мм2 и при σmax=45 кгс/мм2, Kt=4,0).

Известен также способ высокотемпературной термомеханической обработки титановых сплавов, заключающийся в нагреве заготовок сплава до температуры β-области и деформации со степенью 60-70% при этой температуре. Затем заготовки нагревают до температуры окончания полиморфного превращения и проводят повторную деформацию, после чего вновь осуществляют нагрев до температуры окончания полиморфного превращения и проводят окончательную деформацию, причем ее завершают при температуре двухфазной области, соответствующей содержанию β-фазы 25-40%, непосредственно после чего осуществляют закалку в воде и старение при 630-650°C (а.с. №1613505, МПК C22F 1/18, опубл. 15.12.1990).

Однако после подобной обработки характеристики выносливости и малоцикловой усталости сплава также не достигают требуемого уровня.

Достаточно заметно повысить вышеуказанные характеристики позволяет способ высокотемпературной термомеханической обработки, заключающийся в деформации в β-области со степенью 30-90% при температуре на 10-350°C выше температуры полиморфного превращения, затем в (α+β)-области со степенью 10-30% при температуре на 20-50°C ниже температуры полиморфного превращения, затем при температуре на 10-100°C выше температуры полиморфного превращения, затем при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 30-70%, причем деформацию ведут со скоростью 5-60 мм/с при охлаждении полуфабриката на 20-300°C, после чего проводят деформацию со степенью 30-95% в изотермических условиях при температуре в интервале на 100°C выше и на 300°C ниже температуры полиморфного превращения, со скоростью деформирования 0,01-4,0 мм/с и последующим охлаждении на воздухе (а.с. №1106175, МПК C22F 1/18, опубл. 10.07.2015 г.).

Однако, как было обнаружено, при таком способе высокотемпературной термомеханической обработки повышение характеристик выносливости и малоцикловой усталости сплавов обеспечивается не регулярно, что ведет к невозможности добиться стабильности в получении необходимого уровня требуемых характеристик.

Технической задачей и техническим результатом заявленного способа является повышение предела выносливости и малоцикловой усталости, что позволит повысить ресурс и надежность деталей и узлов летательных аппаратов.

Технический результат достигается путем осуществления высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, при этом осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.

Положительный эффект заявленного способа обусловлен тем, что в процессе совокупного воздействия на металл многостадийной высокотемпературной термомеханической обработки и регламентированных скоростей деформации, достигается структурное состояние, характеризующееся сверхмелким зерном, однородной морфологией структурных составляющих и фазовым составом полуфабрикатов из титановых сплавов, обеспечивающих более высокие показатели предела усталости и малоцикловой усталости. Известно, что деформацию в β-области возможно проводить с достаточно большими скоростями за счет высокой технологичной пластичности и возможности воздействия высоких удельных давлений при температурах β-области. Однако, деформация в β-области со скоростями выше 300 мм/с уже не обеспечивает однородности структуры, вследствие чего возможно образование трещин и других дефектов. Деформация в (α+β)-области со скоростями более 60 мм/с может повлечь за собой разрушение полуфабриката, поскольку при данной температуре снижается технологическая пластичность металла и увеличивается сопротивление титановых сплавов деформации.

По сравнению с прототипом, исключение из технологического процесса изготовления полуфабрикатов деформации при температуре на 10-100°C выше температуры полиморфного превращения, позволяет на последующих стадиях высокотемпературной термомеханической обработки получить мелкозернистую однородную структуру, обеспечивающую высокие показатели предела выносливости и малоцикловой усталости, однако, при этом уменьшается трудоемкость процесса деформации в целом.

Предложенный способ был опробован при обработке поковок из сплава ВТ23М, температура полиморфного превращения которого составляет 900°C.

Примеры осуществления изобретения

Пример 1

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 40% и скоростью 75 мм/с при 1050°C, затем в (α+β)-области со степенью 15% и скоростью 20 мм/с при температуре 870°C, затем при температуре 850°C со степенью 50%, причем деформацию ведут со скоростью 20 мм/с при охлаждении полуфабриката до 700°C, после чего проводят деформацию со степенью 50% в изотермических условиях при температуре 800°C, со скоростью деформирования 2,0 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=270000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=225000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=65 кгс/мм2.

Пример 2

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 30% и скоростью 150 мм/с при 1000°C, затем в (α+β)-области со степенью 20% и скоростью 15 мм/с при температуре 880°C, затем при температуре 860°C со степенью 60%, причем деформацию ведут со скоростью 35 мм/с при охлаждении полуфабриката до 750°C, после чего проводят деформацию со степенью 60% в изотермических условиях при температуре 820°C, со скоростью деформирования 2,5 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=235000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=195000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=58 кгс/мм2.

Пример 3

Высокотемпературную термомеханическую обработку проводят по следующему способу: деформация в β-области со степенью 60% и скоростью 200 мм/с при 1200°C, затем в (α+β)-области со степенью 10% и скоростью 10 мм/с при температуре 860°C, затем при температуре 850°C со степенью 45%, причем деформацию ведут со скоростью 30 мм/с при охлаждении полуфабриката до 780°C, после чего проводят деформацию со степенью 65% в изотермических условиях при температуре 850°C, со скоростью деформирования 4,0 мм/с, последующее охлаждение на воздухе. Поковки, полученные данным способом, обладали следующим уровнем свойств: МЦУ=250000 при σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и МЦУ=210000 при σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0), предел выносливости σ-1 (на базе 10 циклов)=62 кгс/мм2.

В таблице 1 приведены сравнительные характеристики усталостной прочности: малоцикловая усталость при максимальном напряжении цикла σmax=70 кгс/мм2 (коэффициент концентрации Kt=2,2) и σmax=45 кгс/мм2 (коэффициент концентрации Kt=4,0) и предел выносливости σ-1 (на базе 107 циклов) после обработки по способу-прототипу и предложенному способу (примеры 1-3).

Как видно из таблицы, после обработки по предложенному способу число циклов до разрушения возрастает на 17,5-40,6%, а предел выносливости на 11,5-25% по сравнению с обработкой по прототипу.

Таким образом, после высокотемпературной термомеханической обработки, предложенной в заявленном изобретении, возрастает ресурс изделий и их надежность в эксплуатации при одновременном уменьшении трудоемкости процесса изготовления полуфабрикатов.

Способ высокотемпературной термомеханической обработки полуфабрикатов из (α+β) - титановых сплавов, заключающийся в том, что осуществляют нагрев, многостадийную деформацию, при которой сначала проводят деформацию при температуре на 10-350°C выше температуры полиморфного превращения со степенью 30-90% и скоростью деформации 1-300 мм/с, затем проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью 10-30% и скоростью деформации 3-60 мм/с, после которой проводят деформацию при температуре на 20-50°C ниже температуры полиморфного превращения со степенью деформации 30-70% и скоростью деформации 5-60 мм/с при охлаждении полуфабриката на 20-300°C, а последующую деформацию проводят со степенью деформации 30-95% в изотермических условиях при температуре в интервале на 100°C выше температуры полиморфного превращения - на 300°C ниже температуры полиморфного превращения со скоростью деформации 0,01-4,0 мм/с, после чего осуществляют охлаждение на воздухе.
Источник поступления информации: Роспатент

Показаны записи 301-310 из 370.
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3102

Стеклокерамический композиционный материал

Изобретение относится к стеклокерамическим композиционным материалам на основе наноструктурированных стеклокерамических матриц, армированных углеродными наполнителями, для изготовления кольцевых элементов и деталей перспективной авиационно-космической техники с рабочей температурой до 1300°С,...
Тип: Изобретение
Номер охранного документа: 0002412135
Дата охранного документа: 20.02.2011
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
Показаны записи 301-310 из 336.
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.7a23

Установка для нанесения защитных покрытий

Изобретение относится к установке для нанесения защитных покрытий и может найти применение для получения защитных покрытий на изделиях авиационной техники. Для повышения качества покрытий за счет устранения их остаточной пористости и расширения технологических возможностей установки при...
Тип: Изобретение
Номер охранного документа: 0002318078
Дата охранного документа: 27.02.2008
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
+ добавить свой РИД