×
20.08.2016
216.015.4cbe

Результат интеллектуальной деятельности: СПОСОБ ТЕРМОВОДОРОДНОЙ ОБРАБОТКИ ПОЛУФАБРИКАТОВ И ИЗДЕЛИЙ ИЗ ПОРИСТОГО МАТЕРИАЛА НА ОСНОВЕ ТИТАНА И ЕГО СПЛАВОВ

Вид РИД

Изобретение

№ охранного документа
0002594548
Дата охранного документа
20.08.2016
Аннотация: Изобретение относится к термоводородной обработке полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов. Способ включает термодиффузионное насыщение водородом и вакуумный отжиг. Термодиффузионное насыщение водородом ведут при температуре 700-900°С до концентрации водорода 0,2-0,4 мас.%, а затем при температуре 500-650°С до концентрации водорода 0,5-0,9 мас.%. Вакуумный отжиг ведут при температуре 550-700°С до концентрации водорода не более 0,01 мас.%. Обеспечивается повышение прочностных характеристик пористого материала за счет увеличения доли физических контактов волокон между собой. 2 пр.
Основные результаты: Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов, включающий термодиффузионное насыщение водородом и вакуумный отжиг при температуре 550-700°С до концентрации водорода не более 0,01 мас.%, отличающийся тем, что термодиффузионное насыщение водородом ведут при температуре 700-900°С до концентрации водорода 0,2-0,4 мас.%, а затем при температуре 500-650°С до концентрации водорода 0,5-0,9 мас.%.

Изобретение относится к металлургии, а именно к получению пористых материалов на основе титана и его сплавов для изготовления медицинских имплантатов.

Известен способ получения пористых медицинских имплантатов из титана и его сплавов, включающий компактирование заготовок из проволоки или волокон с последующей их диффузионной сваркой при температурах 900-1000°C. Такие имплантаты обладают высокой объемной пористостью (50-60%) и хорошими остеоинтеграционными свойствами благодаря необходимым размерам (100-500 мкм) сквозных пор (Патент РФ №2339342). Они успешно применяются при протезировании тел позвонков и межпозвонковых дисков, а также других костных структур.

Однако прочностные свойства такого материала недостаточны, что ограничивает их применение только в малонагруженных изделиях. Это обусловлено тем, что в процессе диффузионной сварки заготовок значительное давление прикладывать нельзя, так как это приводит к закрытию части пор и снижению объемной пористости материала, что, в свою очередь, снижает его остеоинтеграционные свойства. В результате, большинство контактов проволоки или волокон заготовки носят механический характер и легко нарушаются при нагружении изделия в процессе эксплуатации.

Устранить этот недостаток возможно при использовании термоводородной обработки, которая заключается в термодиффузионном насыщении при температурах 600-1000°C полуфабрикатов или изделий из титановых сплавов водородом, который затем удаляется при вакуумном отжиге при температурах 600-900°C. В результате легирования водородом стимулируется α-β превращение, а его удаление при вакуумном отжиге обеспечивает β-α превращение. Такая перекристаллизация материала создает значительный фазовый наклеп, приводящий к развитию процессов рекристаллизации структурных составляющих. Кроме того, регулируя температурно-временные условия насыщения и удаления водорода, можно изменять размер структурных составляющих сплавов титана и регулировать комплекс их механических свойств (А.А. Ильин др. «Водородная технология титановых сплавов», М., 2002 г.).

Наиболее близким к предложенному является способ термоводородной обработки, в соответствии с которым термодиффузионное насыщение водородом до 0,5-0,9 мас. % проводят при температуре 700-850°C с последующим вакуумным отжигом при температуре 550-700°C в течение времени, достаточного для снижения концентрации водорода ниже 0,01 мас. % (Патент РФ №2338811).

Недостатком данного способа является то, что пористый полуфабрикат или изделие длительное время, необходимое для насыщения до значительной концентрации водорода и его равномерного распределения по объему обрабатываемой детали, находится при высоких температурах в β состоянии. При таких условиях протекает интенсивный рост β зерна материала, что снижает его прочностные характеристики, в частности предел текучести материала, и усилие разрыва контакта волокон. Это приводит к тому, что изделие из пористого материала может пластически деформироваться и разрушаться при низких нагрузках, особенно циклических, снижая надежность и долговечность имплантата.

Задачей предложенного технического решения является повышение надежности и долговечности имплантатов из титана и его сплавов.

Технический результат изобретения заключается в повышении прочностных характеристик пористых полуфабрикатов и изделий из титана и его сплавов за счет увеличения доли физических контактов волокон между собой.

Поставленная задача решается тем, что полуфабрикаты и изделия из пористого материала на основе титана и его сплавов для медицинских имплантатов включают термодиффузионное насыщение водородом и вакуумный отжиг при температуре 550-700°С до концентрации водорода не более 0,01 мас. %, причем термодиффузионное насыщение водородом ведут при температуре 700-900°С до концентрации водорода 0,2-0,4 мас. %, а затем при температуре 500-650°С до концентрации водорода 0,5-0,9 мас. %.

На первом этапе при температуре 700-900°С в материал вводится от 0,2 до 0,4% водорода по массе для обеспечения β состояния. Сочетание режимов наводороживания (температура, концентрация) определяется температурой Ас3 титанового сплава. Процесс наводороживания должен начинаться ниже температуры Ас3 на 80-200°С в α+β области материала. Количество вводимого водорода должно быть достаточным для перевода материала в однофазное β-состояние при температуре наводороживания. Это обеспечивает максимальную по объемной доле фазовую перекристаллизацию материала. При этом, чем больше разность температур Ас3 и наводороживания, тем до больших концентраций водорода необходимо насыщать материал. Так, для технически чистого титана с температурой Ас3 890°С необходимо ввести 0,4% водорода при 700°С. Для сплава ВТ6 с температурой Ас3 980°С достаточно ввести до 0,2% водорода при 900°С.

На втором этапе при температуре 500-650°С вводится дополнительное количество водорода так, чтобы его суммарная концентрация соответствовала 0,5-0,9 мас. %. Повышение содержания водорода в материале необходимо вследствие повышения его растворимости в β-фазе и возможности перехода в α+β состояние в процессе охлаждения от высоких температур. Причем, чем выше температура второй стадии наводороживания, тем меньше требуется количества дополнительно вводимого водорода.

После окончания наводороживания на втором этапе в течение времени, достаточного для насыщения водородом до концентрации 0,5-0,9 мас. % и его равномерного распределения по объему обрабатываемого полуфабриката или изделия, проводят охлаждение до комнатной температуры и вакуумный отжиг при температуре 550-700°C в течение времени, достаточного для удаления водорода до концентрации не более 0,01 мас. %. Содержание водорода в сплаве контролируют по давлению в рабочем пространстве установки.

В результате такой стадийной обработки имплантат из пористого титана значительно меньше времени находится при высокой температуре, что препятствует интенсивному росту β-зерна. Кроме того, α-β превращение завершается при низких температурах на втором этапе наводороживания, что способствует более высокому межфазному наклепу материала. Эти два фактора приводят к более интенсивному протеканию процессов рекристаллизации при вакуумном отжиге и способствует более полному переходу механического контакта волокон пористого материала в физический, что повышает прочность имплантата.

Нижняя граница температуры вакуумного отжига обусловлена преобразованием окисной пленки на поверхности титанового сплава с анатаза, препятствующего выведению водорода при более низких температурах, на брукит или рутил, имеющих рыхлое строение, не мешающее удалению водорода. Нагрев выше 700°C нежелателен из-за укрупнения структурных составляющих и снижения прочностных характеристик материала.

Пример 1.

Протезы тела позвонков изготавливались из проволоки диаметром 1,2 мм титанового сплава ВТ1-00 (технически чистый титан). Проволока скручивалась в спираль с внешним диаметром 6,5 мм, сплющивалась в ленту и укладывалась в пресс-форму в виде спирали с внешним диаметром 15 мм. Пресс-форма помещалась в вакуумную установку, в которой диффузионно сваривалась при температуре 900°C и давлении 1 МПа в течение 1 часа.

Часть изделий была обработана по способу-прототипу: насыщение водородом при температуре 800°C до его концентрации 0,8% и вакуумный отжиг при температуре 700°C в течение 2 часов.

Вторая часть изделий - по предлагаемому способу: на первом этапе насыщение водородом вели при температуре 700°C до содержания водорода 0,4 мас. %, на втором этапе - при температуре 550°C до содержания водорода 0,8 мас. %. Окончательный вакуумный отжиг вели при температуре 600°C в течение 6 часов. Замер концентрации водорода спектральным методом показал его концентрацию 0,008 мас. %.

Полученные таким способом протезы тела позвонков испытывались на срез. Изделия помещали в отверстия захвата, расположенные на расстоянии 10 мм. Между ними располагался захват, через отверстие которого проходило изделие. При приложении растягивающих усилий между захватами осуществлялся срез изделия. Усилия среза определялись усилиями разрушения контактов проволоки и количеством физических контактов.

Испытания показали, что разрушение контактов проволоки изделия, обработанного по способу-прототипу, начинается при нагрузках порядка 45Н, а количество физических контактов, которые обнаруживаются по «всплескам» на кривой разрушения не превышают 30.

Разрушение контактов проволоки изделия, обработанного по предложенному способу, начинается при нагрузке 60Н, а количество физических контактов превысило 50.

Испытания показали, что механические характеристики тела позвонков, обработанных по предложенному способу, значительно выше, чем обработанных по способу прототипу.

Пример 2.

Листовой полуфабрикат изготавливали из волокон со средним диаметром 40 мкм титанового сплава ВТ6, полученных методом высокоскоростного затвердевания расплава (на водоохлаждаемом вращающемся медном диске-кристаллизаторе).

Волокна равномерно распределяли на поверхности пресс-формы и проводили диффузионную сварку при температуре 950°C и давлении 0,5 МПа. Полученные таким образом листовые полуфабрикаты подвергали термоводородной обработке по способу-прототипу: насыщение водородом при температуре 850°C до его концентрации 0,8 мас. % и вакуумный отжиг при 600°C в течение 6 часов. Другая часть листовых полуфабрикатов - по предлагаемому способу: на первом этапе насыщение водородом при температуре 900°C до содержания 0,2 мас. %; на втором этапе - при 650°C до содержания водорода 0,8 мас. %. Окончательный вакуумный отжиг проводили при 600°С в течение 6 часов.

Обработанные листовые заготовки испытывали на трехточечный изгиб с базой 50 мм. Испытания показали, что пластическая деформация полуфабрикатов, обработанных по способу-прототипу, начиналась при нагрузках менее 30Н, а по предлагаемому способу - свыше 42Н.

Таким образом, использование заявленного способа позволяет получать пористые изделия и полуфабрикаты из титана и его сплавов с высокими прочностными характеристиками, что повышает их надежность и долговечность. Это особенно важно при использовании предложенного способа для обработки или изготовления медицинских имплантатов.

Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов для медицинских имплантатов, включающий термодиффузионное насыщение водородом и вакуумный отжиг при температуре 550-700°С до концентрации водорода не более 0,01 мас.%, отличающийся тем, что термодиффузионное насыщение водородом ведут при температуре 700-900°С до концентрации водорода 0,2-0,4 мас.%, а затем при температуре 500-650°С до концентрации водорода 0,5-0,9 мас.%.
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
13.02.2018
№218.016.2052

Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов

Изобретение относится к металлургии, а именно к способам получения имплантатов из титановых сплавов с остеоинтегрирующим покрытием. Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов включает термодиффузионное водородное насыщение имплантата и...
Тип: Изобретение
Номер охранного документа: 0002641594
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30ae

Динамический аппарат для исправления сколиотической деформации позвоночника и способ его применения

Изобретение относится к медицине, в частности к устройству для исправления деформации и фиксации позвоночника при его хирургической коррекции и способу его применения. Динамический аппарат для исправления сколиотической деформации позвоночника включает продольные и поперечные стержни, винты и...
Тип: Изобретение
Номер охранного документа: 0002644750
Дата охранного документа: 13.02.2018
Показаны записи 21-29 из 29.
04.04.2018
№218.016.30ae

Динамический аппарат для исправления сколиотической деформации позвоночника и способ его применения

Изобретение относится к медицине, в частности к устройству для исправления деформации и фиксации позвоночника при его хирургической коррекции и способу его применения. Динамический аппарат для исправления сколиотической деформации позвоночника включает продольные и поперечные стержни, винты и...
Тип: Изобретение
Номер охранного документа: 0002644750
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.43e1

Способ получения композиционного материала алюминий - сталь

Изобретение относится к получению композиционного материала алюминий – сталь. Способ включает формирование многослойной заготовки путем чередования алюминийсодержащих слоев и слоев стальной сетки, уплотнение многослойной заготовки прессованием и ее термообработку с получением композиционного...
Тип: Изобретение
Номер охранного документа: 0002649632
Дата охранного документа: 04.04.2018
10.04.2019
№219.017.04c4

Имплантат для замещения костных и хрящевых структур и устройство для его закрепления

Изобретение относится к медицинской технике, а именно к ортопедии и нейрохирургии, и предназначено для замещения костных и хрящевых дефектов, например, поврежденных межпозвонковых дисков и тел позвонков при стабилизации позвоночника. Имплантат с коэффициентом пористости 50-60% представляет...
Тип: Изобретение
Номер охранного документа: 0002339342
Дата охранного документа: 27.11.2008
18.05.2019
№219.017.563c

Устройство для торакопластики на нерезецированной воронкообразно деформированной грудине и способ ее выполнения

Группа изобретений относится к медицинской технике, а именно к устройствам, используемым в ортопедии. Устройство выполненное в виде пластины с двумя концами, на которых имеются отверстия и вырезы для ее крепления к ребрам, изготовлено из материала с эффектом запоминания формы, обеспечивающего,...
Тип: Изобретение
Номер охранного документа: 0002398540
Дата охранного документа: 10.09.2010
31.05.2019
№219.017.7152

Композиционный материал с эффектом памяти формы и способ реализации эффекта памяти формы

Изобретение относится к полимерным композиционным материалам с особыми свойствами, которые используются в различных областях, например в машиностроении, медицине, в качестве конструкционных материалов. Композиционный материал с эффектом памяти формы включает полимерную матрицу, армированную...
Тип: Изобретение
Номер охранного документа: 0002689574
Дата охранного документа: 28.05.2019
10.07.2019
№219.017.aa1d

Фиксатор для позвоночника

Изобретение относится к медицине, а именно к нейрохирургии, травматологии и ортопедии, и может быть использовано для стабилизации поврежденных сегментов позвоночника. Фиксатор содержит транспедикулярные винты, продольные и поперечные балки, узлы крепления с двумя взаимно перпендикулярными...
Тип: Изобретение
Номер охранного документа: 0002270632
Дата охранного документа: 27.02.2006
10.07.2019
№219.017.aa4a

Устройство для костной пластики черепа

Изобретение относится к нейрохирургии и травматологии и предназначено для фиксации кости или ее заменителя в черепной коробке при краниопластике. Устройство выполнено из сплава с эффектом памяти формы и содержит опору и верхнее и нижнее кольца. Нижнее кольцо выполнено закрытым. Верхнее кольцо...
Тип: Изобретение
Номер охранного документа: 0002269953
Дата охранного документа: 20.02.2006
13.01.2020
№220.017.f4d6

Металл-полимерный композиционный материал с двухпутевым эффектом памяти формы и способ получения изделий из него

Изобретение относится к металл-полимерным композиционным материалам. Техническим результатом является реализация материалом двухпутевого эффекта памяти формы не менее 1% при термоциклировании через интервал прямого и обратного мартенситного превращения. Технический результат достигается...
Тип: Изобретение
Номер охранного документа: 0002710681
Дата охранного документа: 10.01.2020
10.05.2023
№223.018.5355

Способ соединения автономно заправленных охладительных контуров ядерных энергетических установок

Изобретение относится к соединениям охладительных контуров ядерных энергетических установок космических аппаратов. При соединении охладительных контуров, заправленных теплоносителем, каждый конец соединяемых трубопроводов охлаждают до застывания теплоносителя. Срезают герметизирующие...
Тип: Изобретение
Номер охранного документа: 0002795352
Дата охранного документа: 03.05.2023
+ добавить свой РИД