×
20.08.2016
216.015.4bf0

Результат интеллектуальной деятельности: ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ

Вид РИД

Изобретение

Аннотация: Вибровозбудитель колебаний механических конструкций состоит из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой. При этом шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом. При этом силовой привод установлен на другом упругом шарнире, имеющем вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен силовой привод, причем при продолжении сторон трапеции образуется угол, находящийся в диапазоне 70-100°, при этом его вершина расположена на оси штока силового привода, которая перпендикулярна геометрической оси колебаний упругого шарнира. 5 з.п. ф-лы, 10 ил.

Изобретение относится к области авиастроения, ракетостроения, машиностроения, строительства мостов и высотных сооружений, в частности к экспериментальным исследованиям динамической устойчивости различных объектов как в натурных условиях эксплуатации, так и методом моделирования в аэродинамических трубах (АДТ) на динамически подобных моделях.

Особенно актуально изобретение для прогнозирования флаттера (как катастрофического явления) при испытаниях в АДТ аэродинамических динамически подобных моделей (ДПМ) несущих поверхностей летательных аппаратов (крыла, киля, стабилизатора) на больших дозвуковых скоростях потока и в трансзвуковом диапазоне чисел Маха (0,8÷1,2).

Целью применения силовозбудителей при испытаниях ДПМ в АДТ является исследование ее основных динамических характеристик (собственных частот, форм колебаний и коэффициентов демпфирования) при изменении скорости потока (числа Маха) и скоростного напора для прогнозирования по полученным данным границы области возникновения флаттера и соответственно в итоге определения допустимых безопасных режимов полета натурного ЛА.

Как известно, для создания возбуждающих колебания сил применяются различные типы вибровозбудителей: электродинамические, инерционные, струйные, пружинно-эксцентриковые и др. Основное требование, предъявляемое к ним, состоит в том, чтобы при передаче на конструкцию необходимых усилий они не оказывали существенного влияния на ее массово-инерционные, жесткостные и демпфирующие характеристики. Как правило, они имеют большой вес и крупные габариты и поэтому в большинстве случаев размещаются вне испытываемого объекта.

Известна полезная модель устройство для возбуждения механических колебаний (патент РФ №151220, МПК В06В 1/16, опубл. 27.03.2015) инерционного типа, которое помимо перечисленных выше недостатков является устройством кругового действия (вращающегося вектора силы), что неприемлемо для возбуждения и анализа колебаний ДИМ несущих поверхностей в потоке АДТ.

Наиболее широкое применение в практике проведения наземных частотных испытаний авиационных и ракетных конструкций нашли электродинамические силовозбудители направленного действия (Микишев Г.Н., Рабинович Б.И. Динамика тонкостенных конструкций с отсеками, содержащими жидкость. - М.: Машиностроение, 1979). Однако эти устройства имеют большие габариты, они относительно тяжелые по сравнению с трансзвуковыми динамически подобными моделями ЛА и при проведении частотных испытаний устанавливаются на неподвижном основании или подвешиваются на тросах.

Известны устройства импульсного (ударного) воздействия на элементы конструкции для возбуждения свободных колебаний моделей при испытаниях в АДТ, которые приводятся в действие с помощью пневмоприводов и электромагнитов (Бисплингхофф Р.А., Эшли X., Халфмэн Р.Л. Аэроупругость. - М.: Издательство иностранной литературы, 1958). Недостатками этих устройств являются:

- ограниченный объем информации (количества и качества возбуждаемых в потоке собственных тонов колебаний модели) для достоверного прогнозирования критической скорости и формы флаттера при испытаниях модели на безопасных докритических режимах,

- большие габариты пневмоприводов для получения необходимых усилий возбуждения колебаний модели и, как следствие, размещение их вне модели в потоке,

- большой вес электромагнитных приводов, что приводит к нарушению условия массового подобия модели при установке привода внутри модели,

- недостаточные усилия на штоке для совершения импульсного (ударного) воздействия, например, на элерон модели консоли крыла при проведении испытаний в АДТ на больших скоростных напорах.

Известно устройство для возбуждения колебаний модели в аэродинамической трубе и механизм передачи возвратно-поступательного перемещения (Патент №1172362, МПК G01M 9/08, G01M 7/00, опубл. 1994). Устройство содержит силовой привод в виде электродинамического возбудителя, помещенный в обтекаемый корпус, закрепленный на стойке с помощью упругого шарнира. Стойка закреплена неподвижно на стенке рабочей части АДТ за моделью. Усилие от вибровозбудителя передается на модель через упругую тонкую и гибкую тягу, перпендикулярную плоскости хорд и находящуюся в потоке, посредством механизма передачи возвратно-поступательного перемещения штока электродинамического возбудителя.

Недостатками устройства являются:

- большие габариты, расположение в потоке за моделью и, как следствие, нарушение структуры потока, обтекающего модель, при испытании модели на больших дозвуковых и трансзвуковых скоростях,

- сложная многоэлементная конструкция устройства, имеющая широкий спектр собственных колебаний, являющихся «паразитными» тонами для испытываемой модели в АДТ,

- увеличение коэффициента демпфирования модели за счет повышения конструкционного трения в устройстве при действии на него статической аэродинамической нагрузки и изменения температуры потока в рабочей части во время пуска АДТ.

Задачей изобретения является разработка конструкции малогабаритного внутримодельного силовозбудителя сравнительно небольшого веса и направленного действия, обеспечивающего возбуждение в потоке в требуемом диапазоне частот вынужденных собственных колебаний ДПМ несущих поверхностей как в направлении, перпендикулярном плоскости хорд, так и в плоскости хорд, а также изменение закона возбуждающей силы (гармоническое, полигармоническое и случайное возбуждение) для экспериментальных исследований характеристик флаттера на докритических режимах потока (чисел Маха и скоростного напора) в трансзвуковых и сверхзвуковых АДТ.

Техническим результатом является расширение экспериментальных возможностей по исследованию явлений динамической аэроупругости модели с сохранением условий подобия по массовым, жесткостным и геометрическим характеристикам без нарушения структуры потока, обтекающего модель.

Техническим результатом является повышение точности измерения собственных частот, форм колебаний и коэффициентов демпфирования колебаний модели при изменении числа Маха и скоростного напора для прогнозирования по полученным данным границы области флаттера.

Решение поставленной задачи и технический результат достигается тем, что в вибровозбудителе колебаний механических конструкций, состоящем из корпуса, силового привода, упругих шарниров, штока, соединенного с упругой тягой, шток силового привода соединен упругой тягой с подвижной платформой со сменным грузом, которая установлена на упругом шарнире, состоящем из двух пересекающихся под углом 90° упругих пластин, соединяющих подвижную платформу с корпусом, при этом силовой привод установлен на другом упругом шарнире, имеющем вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен силовой привод, причем при продолжении сторон трапеции образуется угол, находящийся в диапазоне 70-100°, при этом его вершина расположена на оси штока силового привода, которая перпендикулярна геометрической оси колебаний упругого шарнира.

Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний механических конструкций корпус устройства, состоящий из жестких стенки и основания, имеет L-образную форму в поперечном сечении с ребрами жесткости в крайних сечениях и с посадочными местами для крепления к силовому элементу внутри модели (лонжерону или кессону) либо стенкой, либо основанием для изменения направления возбуждающей силы на 90°.

Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний механических конструкций тяга, соединяющая шток привода и подвижную платформу, представляет собой плоскую тонкую пластину с вырезом посредине для штока силового привода и две поперечные усиленные стенки для соединения штока привода со стенкой подвижной платформы.

Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний сменный груз, установленный на подвижную платформу, состоит из набора съемных пластин, изготовленных из материалов с различным удельным весом.

Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний в качестве силового привода установлен гидроцилиндр.

Решение поставленной задачи и технический результат достигается также тем, что в вибровозбудителе колебаний упругий шарнир, имеющий вид равнобедренной трапеции, состоит из двух элементов в виде z-образных пружин.

На фиг. 1 представлен общий вид устройства для возбуждения вынужденных колебаний динамически подобных моделей.

На фиг. 2 схемы размещения вибровозбудителя в ДПМ консоли крыла.

На фиг. 3 представлен жесткий корпус вибровозбудителя.

На фиг. 4 представлен упругий шарнир гидропривода.

На фиг. 5 представлен упругий шарнир подвижной платформы.

На фиг. 6 представлена упругая тяга.

На фиг. 7 представлена амплитудно-частотная характеристика колебаний модели в потоке.

На фиг. 8 приведены зависимости собственных частот колебаний конструкции от величины скоростного напора потока.

На фиг. 9 приведены зависимости коэффициентов демпфирования от величины скоростного напора потока.

На фиг. 10 представлен прогноз границы флаттера.

Вибровозбудитель (фиг. 1) состоит из жесткого корпуса 1, силового привода, выполненного, например, в виде гидроцилиндра 2, установленного на упругом шарнире 3, подвижной платформы 4, установленной на упругом шарнире 5, сменного груза 6, закрепленного на подвижной платформе 4, и упругой тяги 7, соединяющей шток 8 гидроцилиндра 2 и платформу 4, акселерометра 9, установленного на конце штока 8 гидроцилиндра 2, тензометров 10 наклеенных на стойки упругого шарнира 5.

На фиг. 2 изображена схема установки вибровозбудителя 11 в ДПМ консоли крыла. Вибровозбудитель 11 подсоединен к блоку управления 12 с помощью гидротрассы 13, идущей от гидроцилиндра 2, и кабеля 14, идущего от тензометров 10, акселерометра 9 и гидроцилиндра 2.

Жесткий корпус 1 (фиг. 3) представляет из себя в поперечном сечении L-образную форму с ребрами жесткости 15 в крайних сечениях с приливом 16, расположение которого выбирают в зависимости от относительных размеров внутренних элементов конструкции, и посадочными местами 17 для крепления упругих шарниров 3 и 5 и местами 18 для крепления к силовому элементу (лонжерону или кессону) либо стенкой, либо основанием для изменения направления возбуждающей силы на 90°.

Упругий шарнир 3 имеет вид равнобедренной трапеции, нижнее основание которой закреплено на основании корпуса, а на ее верхнем основании закреплен гидроцилиндр 2 (силовой привод) (фиг. 1, 4). При продолжении сторон трапеции получается равнобедренный треугольник, угол при вершине которого выбирается в диапазоне 70-100°, а его вершина расположена на оси штока силового привода таким образом, чтобы геометрическая ось колебаний гидроцилиндра 2 на упругом шарнире 3 пересекалась с осью штока привода и была к ней перпендикулярна. Упругий шарнир 3, может состоять из двух Z-образных пластин 19 и 20 в сборе, закрепленных на основании корпуса 1.

Подвижная платформа вибровозбудителя (фиг. 5) установлена на упругом шарнире 5, состоящем из двух пересекающихся под углом 90° упругих пластин 21 и 22, одна из которых 22 расположена параллельно основанию корпуса 1 и одним концом крепится к приливу 17 основания корпуса 1 устройства, а другим - к нижней поверхности подвижной платформы 5, расположенной параллельно основанию корпуса 1, вторая упругая пластина 21 расположена перпендикулярно основанию корпуса 1 и одним концом крепится к его основанию, а другим - к поверхности подвижной платформы 4, перпендикулярной основанию корпуса 1.

Упругая тяга 7 (фиг. 1, 6), соединяющая шток 8 гидроцилиндра 2 и стенку подвижной платформы 4, перпендикулярной штоку 8 гидроцилиндра 2, состоит из двух поперечных усиленных стенок и плоской тонкой пластины с вырезом посредине для размещения штока 8 гидроцилиндра 2 и тяги 7 в одной плоскости, для регулирования штока 8 гидроцилиндра 2 со стенкой подвижной платформы 4 и уменьшения габаритов вибровозбудителя.

Груз 6 (фиг. 1, 6) изготавливают в виде пластин из материалов с различным удельным весом для изменения характеристик вибровозбудителя и обеспечения максимально компактных габаритов.

Описание работы при эксперименте в АДТ.

Процедура испытаний модели заключается в том, что сначала модель с встроенным вибровозбудителем колебаний механических конструкций устанавливают в рабочей части АДТ, затем устройство с помощью гибких гидравлических трасс 13 и кабелей 14 подсоединяют к блоку управления 12. Разработанная кинематическая схема и конструкция вибровозбудителя обеспечивают преобразование продольно-поступательного движения штока 8 гидроцилиндра 2 в плоскости хорд модели несущей поверхности в колебания инерционной массы в направлении, перпендикулярном плоскости хорд модели. При этом в системе отсутствуют люфты и трение. Рабочая жидкость подается по гидротрассе 13 в гидропривод 2 под давлением из расположенного вне контура АДТ блока управления 12. Вибровозбудитель управляется дистанционно из кабины управления АДТ. Требуемые диапазоны частот и законы изменения возбуждающей силы задают с помощью блока управления 12.

Перед пуском АДТ выполняют контрольную проверку функционирования всех подсистем (в «наземных» условиях). Для этого включают вибровозбудитель 11, затем определяют в заданном диапазоне частот амплитудно-частотные характеристики модели и регистрируют сигналы с датчиков. Далее выполняют программу испытаний. Каждый пуск АДТ выполняют по заданной траектории q(M) (M - число Маха, q - скоростной напор) в соответствии с программой испытаний. Пуск выполняют в пошаговом режиме. На заранее заданных фиксированных числах M включают вибровозбудитель и в заданном диапазоне частот вынужденных колебаний модели регистрируют сигналы с установленных датчиков. Для уменьшения погрешностей при обработке сигналов включение устройства и регистрацию сигналов выполняют несколько раз. Обработку и анализ полученной информации выполняют после пуска АДТ. Также после каждого пуска АДТ проводят контрольные частотные испытания модели и по результатам сравнения динамических характеристик модели до и после пуска принимают решение о пригодности модели для продолжения испытаний.

В ЦАГИ спроектирована и изготовлена трансзвуковая ДПМ крыла большого удлинения с установленным вибровозбудителем колебаний. Модель успешно прошла испытания на флаттер в трансзвуковой АДТ в диапазоне чисел М=0,3÷1,05.

На фиг. 7 представлена амплитудно-частотная характеристика модели в потоке в диапазоне частот от 0 до 150 Гц при возбуждении колебаний модели силовозбудителем. На фиг. 8 и 9 приведены зависимости собственных частот колебаний f (Гц) и коэффициентов демпфирования основных форм колебаний ДПМ от величины скоростного напора потока Q (кг/м2). По полученным данным выполнен прогноз границы флаттера, результаты которого показаны на фиг. 10.

Применение вибровозбудителя обеспечивает расширение диапазона возбуждаемых в потоке собственных колебаний ДПМ до 200 Гц, что обеспечивает увеличение количества исследуемых «чистых» тонов собственных колебаний ДПМ в 1,5÷2 раза больше, чем у прототипа и отсутствие в данном диапазоне частот «паразитных» (лишних) тонов резонансных колебаний элементов конструкции силовозбудителя, что повышает точность измерения собственных частот, форм колебаний и коэффициентов демпфирования колебаний.

В результате многократное повышение информативности и точности эксперимента позволяет на основании полученных качественно новых результатов по влиянию на динамические характеристики модели числа Маха и скоростного напора определить границу области флаттера, верифицировать математическую модель ДПМ и значительно увеличить объем более дешевых расчетных параметрических исследований для выдачи рекомендаций по обеспечению безопасности от флаттера натурного ЛА в процессе эксплуатации.


ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
ВИБРОВОЗБУДИТЕЛЬ КОЛЕБАНИЙ МЕХАНИЧЕСКИХ КОНСТРУКЦИЙ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 255.
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a4c1

Сопло газоструйной системы управления вертолета

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми...
Тип: Изобретение
Номер охранного документа: 0002607687
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a50e

Крупноразмерная аэродинамическая модель

Изобретение относится к конструкции крупноразмерных аэродинамических моделей летательных аппаратов, применяющихся для испытаний в аэродинамических трубах. Устройство состоит из соединенных между собой сердечников фюзеляжа, крыла с подвижной механизацией, подвижного хвостового оперения с...
Тип: Изобретение
Номер охранного документа: 0002607675
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5d4

Способ повышения прочности болтового металлокомпозиционного соединения

Изобретение относится к области машиностроения и может применяться в авиастроении, транспорте, строительстве, энергетике для повышения прочности и ресурса конструкций из металлических, композиционных и металлокомпозиционных материалов. Способ заключается в использовании наномодифицированной...
Тип: Изобретение
Номер охранного документа: 0002607888
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
Показаны записи 111-120 из 137.
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a4c1

Сопло газоструйной системы управления вертолета

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми...
Тип: Изобретение
Номер охранного документа: 0002607687
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a50e

Крупноразмерная аэродинамическая модель

Изобретение относится к конструкции крупноразмерных аэродинамических моделей летательных аппаратов, применяющихся для испытаний в аэродинамических трубах. Устройство состоит из соединенных между собой сердечников фюзеляжа, крыла с подвижной механизацией, подвижного хвостового оперения с...
Тип: Изобретение
Номер охранного документа: 0002607675
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5d4

Способ повышения прочности болтового металлокомпозиционного соединения

Изобретение относится к области машиностроения и может применяться в авиастроении, транспорте, строительстве, энергетике для повышения прочности и ресурса конструкций из металлических, композиционных и металлокомпозиционных материалов. Способ заключается в использовании наномодифицированной...
Тип: Изобретение
Номер охранного документа: 0002607888
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
+ добавить свой РИД