×
20.08.2016
216.015.4bab

Результат интеллектуальной деятельности: ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области детекторов заряженных частиц на основе твердотельных органических сцинтилляторов. Детектор заряженных частиц с тонким сцинтиллятором в виде пластины содержит полупроводниковый фотосенсор в качестве преобразователя инициированных заряженными частицами световых вспышек в электрические импульсы, при этом сколь угодно тонкая полностью отполированная пластина сцинтиллятора выполнена в виде равностороннего многоугольника с числом углов не менее четырех оптически и механически соединена с прозрачной для сцинтилляций полностью отполированной подложкой, имеющей форму и коэффициент преломления света такие же, как у сцинтиллятора, а суммарная толщина сэндвича, образованного из сцинтиллятора и подложки, равна поперечнику чувствительной поверхности полупроводникового фотосенсора, оптически и механически присоединенного к сэндвичу в одном из его углов, который выполнен сточенным и отполированным для получения контактной площадки с размерами чувствительной области полупроводникового фотосенсора, при этом все поверхности сэндвича, кроме тыльной и с прикрепленным полупроводниковым фотосенсором, покрыты зеркальным отражателем, а тыльная поверхность покрыта диффузным отражателем. Технический результат - повышение эффективности сбора света на чувствительной поверхности фотосенсора. 1 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к области сцинтилляционных детекторов ионизирующих излучений, точнее к детекторам заряженных частиц на основе твердотельных органических сцинтилляторов.

Твердотельные органические (кристаллические и пластиковые) сцинтилляторы обладают рядом свойств, делающих их основным рабочим веществом α- и β-детекторов:

1) низкий эффективный атомный номер обусловливает минимальное обратное рассеяние заряженных частиц и минимальные их радиационные потери (тормозное излучение); благодаря этому аппаратурный (измеренный) энергетический спектр минимально отличается от физического - почти вся энергия частиц расходуется на ионизацию вещества пластика и, соответственно, на конверсию в световые импульсы;

2) сцинтиллятор может быть изготовлен достаточно тонким для нечувствительности к гамма-излучению при сохранении высокой эффективности детектирования α- и β-частиц - таким образом можно раздельно измерять α-, и β-, и γ-излучение в смешанных радиационных полях;

3) пластиковые сцинтилляторы легко поддаются механической обработке, и в процессе изготовления им могут быть приданы достаточно произвольные формы и размеры.

Для преобразования инициированных заряженными частицами сцинтилляционных вспышек в электрические сигналы требуется фотосенсор. До недавнего времени безальтернативным фотосенсором был вакуумный фотоумножитель (Photomultiplier Tube - PMT). Главная проблема съема света с тонкого пластикового сцинтиллятора большой площади с помощью PMT - несоответствие размеров фотокатода и сцинтиллятора, приводящее к потерям части фотонов сцинтилляционных вспышек и, как следствие, к уменьшению амплитуд электрических сигналов на аноде PMT.

Известно несколько приемов для снятия этого противоречия. Большинство из них подробно описаны в монографии [Акимов Ю.К. Фотонные методы регистрации излучений. Дубна: ОИЯИ, 2014 г., 323 с.]:

- сочленение тонкой сцинтилляционной пластины с фотокатодом PMT с помощью световода из хорошо отполированного оргстекла или стекловолокна в виде рыбьего хвоста (фиг. 1);

- тоже самое, но световод в виде веера;

- применение волоконной оптики (пучок световодов окружает сцинтилляционную пластину по периметру или проложен в специальной канавке в виде змейки по лицевой и/или тыльной поверхности сцинтилляционной пластины).

Существуют и иные, более сложные решения. Общий их недостаток состоит в больших потерях света и, следовательно, в увеличении нижнего предела энергий регистрируемых β-частиц, громоздкости и сложности конструкции детектора (обычно стоимость световода превышает стоимость сцинтиллятора, с которым он применяется). Применение α- и β-детекторов в технологических установках атомной промышленности и атомных электростанций (в т.ч. для контроля поверхностной загрязненности оборудования и персонала) требует высокой степени устойчивости к механическим и электромагнитным воздействиям. Понятно, как трудно удовлетворить этим требованиям с детекторами, содержащими вакуумные PMT и хрупкие световоды.

Целый ряд проблем создания α- и β-детекторов для применения в атомной промышленности снимается при замене вакуумных PMT на кремниевые фотосенсоры [Акимов Ю.К. Фотонные методы регистрации излучений. Дубна: ОИЯИ, 2014 г., 323 с.]. К числу их относятся: кремниевые фотодиоды (PhD), кремниевые дрейфовые детекторы (SDD), лавинные фотодиоды (APD) и кремниевые фотоумножители (SiPM). В двух последних случаях кремниевые фотосенсоры обладают внутренним усилением. Для APD усиление составляет величину 50÷200 (в зависимости от режимов эксплуатации), а для SiPM усиление может быть на уровне усиления вакуумных фотоумножителей. SiPM наиболее привлекательны в качестве фотосенсора для применения со сцинтилляторами. SiPM представляют собой кремниевые сэндвичи - слои, образующие pn-переходы, на которые подано обратное смещение. Размеры чувствительной к свету поверхности от 1×1 до 6×6 mm. Толщина сэндвича ≈5 µm. Каждый такой сэндвич содержит в себе несколько тысяч микропикселей - миниатюрных счетчиков Гейгера-Мюллера с гасящими разряд резисторами. Размер одного микропикселя от 10×10 до 50×50 µm. Фотон света, с вероятностью 40÷70% (отношение чувствительной и общей площадей фотосенсора - FF) попавший на микропиксель с вероятностью 25÷75% (квантовая эффективность - QE) вызывает появление электрон-дырочной пары. Далее, с вероятностью 70÷90% (PG), двигаясь в электрическом поле с высокой напряженностью, фотоэлектрон рождает лавину электронов с числом носителей 105÷106 (это вполне соответствует усилению вакуумных фотоумножителей). Величина, равная FF×QE×PG, называется фотодетекторной эффективностью кремниевого фотоумножителя (PDE). PDE для SiPM имеет тот же смысл, что QE для PMT. Процесс образования лавины занимает около 1 ns. Возникающий лавинный ток, как и в счетчике Гейгера-Мюллера, протекает через гасящий резистор, напряжение падает, и лавинный процесс прекращается. На нагрузке образуется сигнал стандартной амплитуды. Линейная зависимость между засветкой SiPM, сцинтилляционной вспышкой и величиной выходного тока достигается за счет большого числа микропикселей, подключенных к общей нагрузке, но при условии, что число фотонов света во вспышке существенно ниже, чем число микропикселей.

Целый ряд преимуществ кремниевых фотоумножителей перед вакуумными фотоумножителями (PMT) делают их очень перспективными для создания сцинтилляционных детекторов ионизирующих излучений. Это нечувствительность к магнитному полю; малые габариты и масса; низкое значение рабочего напряжения (25÷75 V против 1000÷2000 V, необходимых для PMT); более широкий, чем для PMT, спектральный диапазон чувствительности к свету (от фиолетового до оранжевого).

Известны детекторы заряженных частиц, где в качестве конвертора световых вспышек в тонком пластиковом сцинтилляторе в электрические импульсы применяются кремниевые фотоумножители. В подавляющем большинстве для этого используются световоды (простые или спектросмещающие), уложенные в специальные канавки в виде змейки на тыльной стороне сцинтилляционной пластины (фиг. 2) [V. Andreev et al. A high-granularity scintillator calorimeter readout with silicon photomultipliers. Nucl. Instrum. and Meth. in Physics Research, V. A540 (2005) p. 368-380], [M.Y. Kim et al. Beam test performance of SiPM-based detectors for cosmic-ray experiments. Nucl. Instrum. and Meth. in Physics Research, V. A703 (2013) p. 177-182], [P. Buzhan et al. Silicon photomultiplier and its possible applications. Nucl. Instrum. and Meth. in Physics Research V. A504 (2003) р. 48-52]. Недостатком таких детекторов являются:

- сложность, а следовательно и дороговизна конструкции;

- значительные потери света на границах «сцинтиллятор-световод-SiPM» и в самом световоде из-за большой его длины.

Возможен съем световых вспышек на SiPM без применения световодов, но для обеспечения слабой зависимости амплитуды электрического сигнала от места взаимодействия заряженной частицы со сцинтиллятором необходимо большое число SiPM, установленных с тыльной стороны тонкой сцинтилляционной пластины. Это неприемлемо по экономическим соображениям.

Известен сцинтилляционный детектор [F. Simon, С. Soldner. Uniformity studies of scintillator tiles directly coupled to SiPMs for imaging calorimetry. Nucl. Instrum. and Meth. in Physics Research V. A620 (2010) p. 196-201] заряженных частиц с одним SiPM, находящимся в оптическом контакте со сцинтилляционной пластиной (является прототипом). Детектор представляет собой (фиг. 3) пластину сцинтиллятора размером 30×30×5 mm, в боковой грани которой сделана полость для размещения в ней кремниевого фотоумножителя размером 1×1 mm. Все стенки полости кроме одной, к которой примыкает SiPM, выполнены шероховатыми для получения диффузного рассеяния света, а соприкасающаяся с фотосенсором отполирована. Вся сцинтилляционная пластина обернута в алюминиевую фольгу для получения зеркального отражения света. Пластина сканировалась с шагом 0,5 mm коллимированным пучком β-частиц и для каждой позиции пучка измерялась средняя амплитуда электрических импульсов на выходе SiPM.

Достигнутая максимальная неоднородность светосбора в зависимости от места взаимодействия β-частиц со сцинтилляционным пластиком составила 35%. Неоднородность светосбора не превышала 20% в 98,9% позиций пучка, 10% - в 97,1% позиций, 5% - в 87,9% позиций.

Для сравнения были проведены измерения с SiPM просто приклеенным к боковой поверхности (без помещения в полость). Неоднородность светосбора не превысила 20% в 90,7% позиций пучка, 10% - в 80,85 позиций, 5% - в 57,4% позиций. Таким образом показано, что размещение фотосенсора в полости с диффузно отражающими стенками снижает зависимость амплитуды электрического сигнала на выходе SiPM от места взаимодействия β-частиц со сцинтилляционной пластиной.

Был исследован детектор с пластиной толщиной 3 mm. SiPM был помещен в аналогичную полость. Уменьшение толщины сцинтилляционного пластика привело к увеличению неоднородности светосбора: неоднородность светосбора не превысила 20% в 98,0% позиций пучка, 10% - в 94,0 позиций, 5% - в 82,5% позиций. Совершенно очевидно, что дальнейшее уменьшение толщины сцинтиллятора приведет к еще большему возрастанию неоднородности светосбора.

Недостатками детектора-прототипа являются следующие:

1. При такой конструкции невозможно применение тонкого пластического сцинтиллятора толщиной 1 mm и менее, что актуально для достижения нечувствительности детектора к гамма-фону.

2. Пластический сцинтиллятор в виде тонкой пластины, в которой сделана полость для помещения в нее SiPM, и при этом боковые поверхности ее шероховатые, а фронтальная - полированная, достаточно трудоемок в изготовлении и нетехнологичен.

Задачей изобретения является создание нечувствительного к гамма-излучению высокоэффективного детектора короткопробежных заряженных частиц с высокой однородностью светосбора по чувствительной поверхности.

Указанная задача решается тем, что рабочее вещество детектора представляет собой сэндвич из сколь угодно тонкой сцинтиллирующей пластиковой пластины и оптически прозрачной в полосе высвечивания пластика подложки с общей толщиной, равной поперечнику чувствительной области кремниевого фотоумножителя, который оптически и механически сочленяется с контактной площадкой сэндвича, имеющей площадь равную площади кремниевого фотоумножителя и созданной на месте одного из углов сэндвича с рабочей и тыльной сторонами в виде равностороннего многоугольника с числом сторон от четырех до бесконечности, при этом все свободные поверхности сэндвича, кроме тыльной, покрыты зеркальным отражателем, а тыльная сторона - диффузным.

Реализация детектора показана на фиг. 4, где приведена одна из возможных конструкций. Она содержит детектирующую среду в виде сэндвича из сколь угодно тонкого сцинтиллирующего пластика 1 и нанесенного на его тыльную сторону по всей ее площади оптически прозрачного в полосе высвечивания пластика несцинтиллирующего материала 2, например специально подобранного оргстекла, имеющего коэффициент преломления, равный коэффициенту преломления сцинтиллятора. Толщина образованного из сцинтилляционной пластины и несцинтиллирующего, оптически прозрачного материала сэндвича выбирается равной поперечнику чувствительной поверхности кремниевого фотоумножителя 3. Детектирующий сэндвич имеет форму равностороннего многоугольника с числом сторон не менее 4-х (вплоть до окружности). Один угол сэндвича сточен до получения площадки с размерами, равными размерам чувствительной области SiPM. Площадка отполирована и с ней оптически и механически сопряжен кремниевый фотоумножитель 3. Все свободные поверхности сэндвича, кроме тыльной (со стороны несцинтиллирующего пластика), покрыты зеркальным отражателем 4, а упомянутая тыльная поверхность покрыта диффузным отражателем 5.

Создание такой конструкции продиктовано стремлением одинаково хорошо собирать на небольшой относительно поверхности пластика чувствительной поверхности кремниевого фотоумножителя световые вспышки, возникающие в любой точке сцинтиллятора.

Прозрачная несцинтиллирующая подложка под пластиком в сэндвиче призвана задействовать всю чувствительную поверхность кремниевого фотосенсора в сборе света.

Известно [Акимов Ю.К. Фотонные методы регистрации излучений. Дубна: ОИЯИ, 2014 г., 323 с.], что при форме сцинтиллятора, сильно отличающейся от куба, наилучшие условия для сбора света на одной из граней сцинтиллятора создаются при наличии зеркального отражателя вокруг кристалла. Однако могут возникать ситуации, когда некоторые фотоны света, претерпевая множество отражений, могут до своего поглощения в сцинтилляторе так и не достигнуть фотосенсора. Диффузный отражатель способствует исключению движения фотонов света по одному и тому же пути и тем самым повышает вероятность попадания на фотосенсор до своего поглощения.

Размещение кремниевого фотоумножителя именно в одном из углов сэндвича, а не на одной из граней, также увеличивает эффективность светосбора, поскольку этим минимизируется число граней детектирующей среды, перпендикулярных чувствительной поверхности фотосенсора. Это согласно следствиям закона Ламберта условие максимального светосбора [V.P. Semynozhenko et al. Recent progress in the development of CsI(Tl) crystal-Si-photodiode spectrometric detection assemblies. Nucl. Instrum. and Meth. in Physics Research V. A 537 (2005) p. 383-388].

Увеличение числа боковых сторон детектирующего сэндвича также способствует улучшению светосбора.

Принятые меры при прочих равных условиях обеспечивают гораздо более эффективный светосбор, чем в детекторе-прототипе.

Технический результат применения заявляемого детектора заряженных частиц с тонким сцинтиллятором состоит в том, что появляется возможность эффективного сбора света со сколь угодно тонких сцинтилляционных пластиковых пластин, имеющих площадь рабочей поверхности, многократно превышающую площадь чувствительной поверхности кремниевого фотоумножителя, и тем самым обеспечить низкий энергетических порог регистрации короткопробежных заряженных частиц.


ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ
ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ
ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ
ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ
ДЕТЕКТОР ЗАРЯЖЕННЫХ ЧАСТИЦ С ТОНКИМ СЦИНТИЛЛЯТОРОМ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 107.
10.02.2016
№216.014.c3fc

Способ прокатки двутавровых профилей

Изобретение относится к области сортовой прокатки двутавровых профилей, преимущественно с параллельными гранями полок, на рельсобалочных прокатных станах, снабженных компактными непрерывно-реверсивными группами-тандем универсальных и двухвалковых клетей. Полученную в черновой клети разрезную...
Тип: Изобретение
Номер охранного документа: 0002574632
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c403

Способ производства биметаллического проката на основе низкоуглеродистой стали и алюминиевого сплава

Изобретение относится к производству двух-, трех- и многослойных материалов горячей прокаткой и может быть использовано при производстве биметаллического проката на основе низкоуглеродистой стали и алюминиевых сплавов. Способ включает предварительную механическую обработку поверхности стальной...
Тип: Изобретение
Номер охранного документа: 0002574948
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.04f6

Кислотостойкая композиция для ремонта эмалевых покрытий

Изобретение относиться к средствам для ремонта повреждений и защиты от коррозии в месте повреждения стеклоэмалевых покрытий технологического оборудования химических предприятий, систем трубопроводов, другого оборудования технического назначения и может быть применено на предприятиях химической...
Тип: Изобретение
Номер охранного документа: 0002587678
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b7a

Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов...
Тип: Изобретение
Номер охранного документа: 0002579856
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c4c

Биобарабан для аэробной переработки сырья

Изобретение может быть использовано в биоэнергетике в качестве универсального аэробного реактора для переработки в удобрение навоза животных, помета птиц, зеленой массы, бытовых и других сельскохозяйственных и лесных отходов биосырья. Биобарабан содержит цилиндрический корпус на роликоопорах с...
Тип: Изобретение
Номер охранного документа: 0002579789
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d33

Способ продольной прокатки труб

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке труб в станах продольной прокатки. Способ включает прокатку гильзы-трубы в валках с калибрами, придание гильзе овальной формы непосредственно перед валками стана продольной прокатки труб. Повышение...
Тип: Изобретение
Номер охранного документа: 0002579857
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2df0

Способ для измерения перемещений (варианты)

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим. При этом формируют два дополнительных световых потока на...
Тип: Изобретение
Номер охранного документа: 0002579812
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e03

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002579766
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e4f

Система ускоренной аэробной переработки биомассы

Система относится к области биотехнологий в сельском и лесном хозяйствах и может быть использована для ускоренной ферментационной переработки отходов жизнедеятельности животных, населения и птиц, а также других видов биомассы. Система содержит устройство подготовки перерабатываемой жидкой...
Тип: Изобретение
Номер охранного документа: 0002579787
Дата охранного документа: 10.04.2016
Показаны записи 71-80 из 159.
20.10.2014
№216.012.fe8c

Устройство для раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочие ролики установлены параллельно оси корпуса устройства. При этом рабочая часть корпуса содержит шток, снабженный коническим элементом, выполненным с возможностью осевого перемещения,...
Тип: Изобретение
Номер охранного документа: 0002531020
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9f

Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли...
Тип: Изобретение
Номер охранного документа: 0002531039
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fea4

Рабочее вещество осл-детектора

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а...
Тип: Изобретение
Номер охранного документа: 0002531044
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feb0

Способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002531056
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feb8

Способ и устройство для исследования параметров расплавов

Изобретение относится к технической физике, а именно к анализу физико-химических параметров металлических сплавов, в частности, на основе железа или никеля, путем фотометрического определения кинематической вязкости v, электросопротивления ρ и плотности d нагреваемого образца в зависимости от...
Тип: Изобретение
Номер охранного документа: 0002531064
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feba

Устройство для крепления электронагревателя в электропечи

Изобретение относится к технической физике, а именно к анализу материалов путем определения вязкости и электрического сопротивления и плотности высокотемпературных металлических расплавов. Предлагается устройство для крепления электронагревателя в электропечи, содержащее, по крайней мере, два...
Тип: Изобретение
Номер охранного документа: 0002531066
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.01bb

Низкооборотный генератор для ветросиловой установки

Изобретение относится к области энергетики и предназначено для использования в низкооборотных ветросиловых установках для преобразования ветровой энергии в электрическую. Низкооборотный генератор для ветросиловой установки в бескорпусной конструкции содержит соединенный с валом ветросиловой...
Тип: Изобретение
Номер охранного документа: 0002531841
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.02fe

Способ синтеза 5,5'-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена) - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 5,5'-(2,3,7,8-бис-(9Н,10Н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена), который включает взаимодействие 1,6-дибромпирена с 2-додецил-5-трибутилстаннилтиофеном по методу Стилле с получением первого полупродукта...
Тип: Изобретение
Номер охранного документа: 0002532164
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03f0

Способ потенциометрического определения антиоксидантной/оксидантной активности с использованием комплексов металлов

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения...
Тип: Изобретение
Номер охранного документа: 0002532406
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
+ добавить свой РИД