×
20.08.2016
216.015.4a7d

Результат интеллектуальной деятельности: РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА

Вид РИД

Изобретение

№ охранного документа
0002594939
Дата охранного документа
20.08.2016
Аннотация: Изобретение относится к двигателям на эффекте Холла. Двигатель содержит резервуар (101) газа под высоким давлением, модуль (103) регулирования давления, устройство (105) управления расходом газа, канал ионизации, катод (40А, 40В), расположенный вблизи выпускного отверстия канала ионизации, анод, связанный с каналом ионизации, блок (110) электропитания, электрический фильтр (120) и катушки (31, 32) создания магнитного поля вокруг канала (21) ионизации. Также двигатель на эффекте Холла содержит дополнительный блок (125) электропитания, предназначенный для приложения пульсирующего напряжения между анодом (25) и катодом (40А, 40Е). При этом указанный дополнительный блок (125) электропитания поочередно создает первое напряжение разряда в течение первого промежутка времени величиной 5-15 мкс и второе напряжение разряда в течение второго промежутка времени величиной 5-15 мкс. Техническим результатом изобретения является повышение удельного импульса и увеличение срока службы при значительном снижении эрозии разрядного канала.7 з.п. ф-лы, 4 ил.

Область техники, к которой относится изобретение

Настоящее изобретение относится к двигателю на эффекте Холла, называемому также стационарным плазменным двигателем.

Уровень техники

Говоря в общих чертах, двигатель на эффекте Холла содержит канал ионизации и разряда, связанный с анодом, и катод, расположенный вблизи выпускного отверстия этого канала. Канал ионизации и разряда выполнен из изоляционного материала, такого как керамика, и окружен магнитопроводом и электромагнитными катушками. В канал ионизации и разряда, а также в катод, впрыскивают инертный газ, например ксенон. Инертный газ ионизируется в канале ионизации и разряда в результате столкновения с электронами, испускаемыми катодом. Полученные ионы ускоряются и выбрасываются осевым электрическим полем, образованным между анодом и катодом. Магнитопровод и электромагнитные катушки создают внутри канала по существу радиальное магнитное поле.

Фиг.2 схематично в осевом сечении изображает иллюстративный пример двигателя на эффекте Холла с замкнутым дрейфом электронов.

На фиг.2 показаны кольцевой канал 21, ограниченный элементом 22 из изоляционного материала, такого как диэлектрическая керамика, магнитопровод 24, содержащий внешние и внутренние кольцевые полюсы 24а и 24b, магнитное ярмо 24d, расположенное на верхнем по потоку конце двигателя, и центральный сердечник 24с, соединяющий между собой кольцевые полюсы 24а, 24b и магнитное ярмо 24d. Катушки 31, 32 позволяют создать в кольцевом канале 21 магнитное поле. Полый катод подсоединен к устройству подачи ксенона для формирования облака плазмы перед расположенным внизу по потоку выпускным отверстием канала 21. Анод 25 установлен в кольцевом канале 21 и связан с кольцевым распределителем 27 ионизируемого газа (ксенона). Двигатель во всей совокупности своих элементов защищен корпусом 20.

На фиг.2 символами обозначены линии B магнитного поля, электрическое поле E, атомы а, ионы i и электроны е, создающиеся из впрыскиваемого ионизируемого газа.

В двигателе на эффекте Холла, таком как показан на фиг.2, атомы рабочего тела, например ксенона, ионизируются посредством разряда, ограниченного каналом 21. Возникающие ионы i ускоряются в электрическом поле E, создаваемом анодом 25, и выбрасываются через расположенное ниже по потоку выпускное отверстие 26 кольцевого канала 21, обеспечивая тем самым тягу.

Благодаря комбинации из по существу осевого электрического поля E и по существу радиального магнитного поля B внутри канала 21 возникает азимутальный электронный ток силой в несколько десятков ампер.

Примеры выполнения двигателя на эффекте Холла можно посмотреть в документах FR 2693770, FR 2743191, FR 2782884 и FR 2788084.

Между тем функционирование двигателей на эффекте Холла сопряжено с двумя следующими ограничительными факторами.

Первый заключается в ограниченном сроке службы, обусловленном эрозией керамики разрядного канала. Дело в том, что часть ионов, создаваемых двигателем, ускоряется в разрядном канале в направлении стенок двигателя. Эти ионы вследствие их энергии вызывают эрозию керамики разрядного канала и тем самым снижают срок службы двигателя.

Второй фактор состоит в уменьшении КПД двигателя и в его ускоренном старении при высоких удельных импульсах (Isp). Повышение удельного импульса стационарного плазменного двигателя происходит по существу благодаря увеличению напряжения Ud разряда. Это приводит к генерированию более горячей плазмы, которая интенсивно взаимодействует со стенками разрядного канала. При таких обстоятельствах энергия электронов значительно повышается, вплоть до уровней, несовместимых с керамикой канала двигателя. Более высокая скорость ионов также способствует интенсификации эрозии керамики двигателя.

По этим причинам до настоящего времени считалось необходимым использовать такие двигатели на эффекте Холла, которые характеризуются ограниченным удельным импульсом, составляющим в типовом случае порядка 1000-2500 секунд.

Для повышения срока службы двигателя на эффекте Холла было предложено выполнять разрядные каналы линейно перемещаемыми. Соответственно, если камера становится эродированной, керамику разрядного канала следует подвинуть вдоль оси двигателя. Однако это все же не позволяет решить проблемы, ограничивающие функционирование при высоком напряжении.

Из уровня техники также известны ионные двигатели с бомбардировкой, которые содержат сетки для ускорения ионов и могут функционировать с удельными импульсами выше 4000 секунд. Однако использование решеток связано с рядом недостатков.

Раскрытие изобретения

Задачей настоящего изобретения является устранение недостатков известных плазменных двигателей и, в частности, модификация двигателей на эффекте Холла или плазменного двигателя с замкнутым дрейфом электронов с целью улучшения их технических характеристик, а именно повышения удельного импульса и увеличения срока службы при значительном снижении эрозии разрядного канала.

Решение поставленных задач достигается за счет создания двигателя на эффекте Холла, содержащего по меньшей мере один резервуар газа под высоким давлением, модуль регулирования давления, устройство управления расходом газа, канал ионизации, по меньшей мере один катод, расположенный вблизи выпускного отверстия канала ионизации, анод, связанный с каналом ионизации, блок электропитания, электрический фильтр и катушки создания магнитного поля вокруг канала ионизации, причем данный двигатель характеризуется тем, что он также содержит дополнительный блок электропитания, предназначенный для приложения пульсирующего напряжения между анодом и указанным по меньшей мере одним катодом, при этом данный дополнительный блок электропитания поочередно создает первое напряжение (Udmin) разряда в течение первого промежутка (ttot-tj/A) времени величиной 5-15 мкс и второе напряжение (Udmax) разряда в течение второго промежутка (tj/A) времени величиной 5-15 мкс.

В предпочтительном случае указанный дополнительный блок электропитания поочередно создает первое напряжение (Udmin) разряда величиной 150-250 В и второе напряжение (Udmax) разряда величиной 300-1200 В.

Согласно предпочтительному варианту изобретения, указанный первый промежуток (ttot-tj/A) времени составляет 5-10 мкс, и указанный второй промежуток (tj/A) времени составляет 5-10 мкс.

В предпочтительном случае первое указанное первое напряжение (Udmin) разряда составляет 180-220 В, а указанное второе напряжение (Udmax) разряда составляет 400-1000 В.

Указанный дополнительный блок электропитания может содержать по меньшей мере один конденсатор.

Согласно одному из частных вариантов изобретения, указанный дополнительный блок электропитания поочередно создает первое напряжение (Udmin) разряда и второе напряжение (Udmax) разряда соответственно в течение первого промежутка (ttot-tj/A) времени и второго промежутка (tj/A) времени, которые по существу равны.

Согласно особенному аспекту изобретения, указанные катушки создания магнитного поля питаются от блока электропитания и электрического фильтра независимо от анода, запитываемого от дополнительного блока электропитания и электрического фильтра.

Краткое описание графических материалов

Другие особенности и преимущества изобретения становятся более понятными из последующего рассмотрения конкретных вариантов его выполнения, приведенных в качестве иллюстративных примеров неограничительного характера и раскрытых со ссылкой на прилагаемые чертежи, на которых:

фиг.1 изображает блок-схему предложенного двигателя на эффекте Холла, соединенного с системой его электропитания,

фиг.2 схематично изображает в осевом разрезе пример двигателя на эффекте Холла, к которому применимы принципы настоящего изобретения,

фиг.3 изображает графики изменения тока I разряда и средней плотности N газа во времени, имеющие форму низкочастотных колебаний и приведенные в отношении двигателя на эффекте Холла, к которому применимы принципы настоящего изобретения,

и фиг.4 изображает график изменения напряжения Ud разряда во времени, которое в соответствии с изобретением поочередно изменяется между высоким напряжением Udmax и низким напряжением Udmin.

Осуществление изобретения

Изобретение относится к двигателю на эффекте Холла, базовая конструкция которого была описана выше со ссылкой на фиг.2.

Хотя двигатель на эффекте Холла часто называют «стационарным плазменным двигателем», его функционирование отнюдь не является стационарным. Здесь могут рассматриваться множество диапазонов частот, от 20 кГц до нескольких гигагерц.

При работе на низкой частоте обычный двигатель на эффекте Холла характеризуется следующими фазами:

a) заполнение разрядного канала инертными атомами рабочего тела, такого как ксенон,

b) ионизация инертных атомов посредством энергетических электронов в нижней по потоку половине двигателя,

c) ускорение и выброс ионов, созданных электрическим полем Е, которое пропорционально напряжению Ud разряда в двигателе.

Один и тот же трехфазный цикл повторяют периодически.

На фиг.3 представлена упрощенная модель колебаний в двигателе на эффекте Холла.

На фиг.3 показаны ток 1 разряда как функция времени (кривая 1) и средняя плотность N газа как функция времени (кривая 2).

Четко видны колебания фронта ионизации/ускорения, являющиеся результатом колебания плотности инертного газа.

Таким образом, двигатель на эффекте Холла характеризуется чередованием фронта ионизации/ускорения, выбрасывающего ионизированный инертный газ, и фронта не ионизированного инертного газа, заполняющего разрядную камеру двигателя.

В обычном двигателе на эффекте Холла напряжение Ud разряда двигателя зафиксировано на предварительно заданном уровне, достаточно высоком для того, чтобы обеспечить получение горячих электронов, способных к хорошей ионизации, и ускорение ионов под действием интенсивного электрического поля.

В обычных двигателях на эффекте Холла напряжение Ud разряда поддерживается по существу постоянным в ходе всего функционирования. Как отмечено выше, величину этого напряжения Ud выбирают на уровне, который позволяет ограничить скорость эрозии керамики разрядного канала (в типовом случае оно составляет около 300-350 вольт), однако это приводит также к ограничению получаемого удельного импульса.

Предложенный двигатель на эффекте Холла позволяет получить высокий удельный импульс без соответствующего повышения интенсивности эрозии керамики разрядного канала и без необходимости модификации механической конструкции двигателя.

Для этого в ходе функционирования предложенного двигателя на эффекте Холла обеспечивают пульсацию напряжения Ud разряда двигателя для управления распространением фронта ионизации/ускорения двигателя путем снижения амплитуды пространственных колебаний потребления инертных атомов в двигателе.

Это обстоятельство, за счет периодического снижения напряжения разряда, предотвращает формирование и последующее ускорение ионов в зоне, находящейся слишком далеко вверх по потоку в канале двигателя, а следовательно - существенно нивелирует условия для эрозии канала.

Фиг.4 иллюстрирует функционирование двигателя с напряжением Ud разряда, колеблющимся с течением времени между низким напряжением разряда, равным Udmin, и высоким напряжением разряда, равным Udmax (кривая 3).

Вначале напряжение Ud разряда устанавливают на низкой величине, равной Udmin. Когда канал двигателя заполняется инертными атомами, напряжение Ud разряда устанавливают на высокой величине, равной Udmax, в течение времени tj/A, которое может составлять, например, от 5 до 15 мкс, более предпочтительно от 5 до 10 мкс, причем хорошие результаты дает величина вблизи 10 мкс.

Общее время ttot цикла с высокой величиной Udmax напряжения разряда и с низкой величиной Udmin напряжения разряда обусловлено скоростью заполнения канала двигателя инертными атомами и может составлять, например, от 10 до 30 мкс, более предпочтительно от 10 до 20 мкс, причем хорошие результаты дает величина вблизи 20 мкс.

Напряжение Udmin может составлять, например, от 150 до 250 В, более предпочтительно от 180 до 220 В.

Напряжение Udmax может составлять, например, от 300 до 1200 В, более предпочтительно от 400 до 1000 В.

На фиг.4 представлен пример функционирования с пульсацией, при котором временные промежутки tj/A и ttot-tj/A, в течение которых напряжение разряда равно соответственно Udmax и Udmin, по существу равны друг другу. Однако данное условие не является обязательным.

Частота колебаний величины Ud между минимальной величиной Udmin и максимальной величиной Udmax зависит от заданной величины напряжения Udmax, которое затем определяет величину удельного импульса двигателя.

На фиг.1 в виде блок-схемы показана общая архитектура предложенного двигателя на эффекте Холла, оснащенного системами его питания газом и электричеством.

Резервуар 101 способного к ионизации газа, такого как ксенон, подсоединен трубопроводом 102 к модулю 103 регулирования давления, который подсоединен трубопроводом 104 к устройству 105 управления расходом газа, предназначенному для питания через гибкие трубопроводы 106, 107, 108 катодов 40А и 40В, а также газораспределителя внутри корпуса 20, в котором заключен разрядный канал. Использование двух катодов 40А и 40В вместо одного катода не является обязательным, просто данное решение предусматривает резерв из соображений надежности.

Основной блок 110 электропитания подключен соединениями 121 к электрическому фильтру 120, используемому для подачи питания по соединениям 123 на 20 катушки, которые расположены в корпусе 20 и предназначены для создания магнитного поля вокруг канала ионизации и разряда. Непосредственное соединение 122 между основным блоком 110 и устройством 105 управления расходом газа позволяет управлять этим устройством.

Основной блок 110 электропитания получает по линиям 111, 112, 113 электроэнергию, вырабатываемую внешним источником, таким как солнечные панели, и преобразует эту электроэнергию, которая в типичном случае может поставляться с напряжением 50 В, в электроэнергию более высокого напряжения, порядка нескольких сот вольт.

Основной блок 110 электропитания содержит цепи генерирования аналогового управляющего сигнала, который подается по линии 122 на устройство 105 управления расходом газа.

Основной блок 110 электропитания получает по линии 114 данные, поставляемые цепью 115 управления, связанной с модулем 103 регулирования давления газа, подаваемого на устройство 105 управления расходом газа от газового резервуара 101.

Цепь 115 управления получает по линиям 118, 119 данные с датчиков о состоянии клапанов модуля 103 регулирования давления газа, а по линиям 116, 117 получает внешние данные. Данные, передаваемые от цепи управления 115 по линии 114 к основному блоку 110 электропитания, позволяют вырабатывать указанный аналоговый управляющий сигнал, подаваемый по линии 122 на устройство 105 управления расходом газа.

Дополнительный блок 125 электропитания, подсоединенный к основному блоку 110 электропитания, обеспечивает по линиям 126, 126А и через фильтр 120 электропитание для анода, заключенного в корпусе 20.

Этот дополнительный блок 125 электропитания, взаимодействующий с катодами 40А, 40В и анодом 25 для создания электрического поля, подает вместе с фильтром 120 пульсирующее напряжение к аноду и каждому из катодов 40А, 40В, тогда как электромагнитные катушки, заключенные в корпусе 20, запитываются параллельно от основного блока 110 электропитания и фильтра 120.

Дополнительный блок 125 электропитания позволяет создавать два различных уровня напряжения, а именно напряжение низкого уровня, например около 200 В, и напряжение высокого уровня порядка нескольких сот вольт, вплоть до примерно 1200 вольт.

В качестве примера укажем, что ток может иметь силу в 2 А при низком напряжении 200 В и силу в 7 А при высоком напряжении 400 В.

Энергия, запасенная в дополнительном блоке 125 электропитания, должна высвобождаться в точно определенные моменты. В качестве примера укажем, что частота соседних разрядов может быть близка к 1000 кГц с полным циклом в течение периода в 20 мкс.

Дополнительный блок 125 электропитания может содержать конденсаторы в несколько микрофарад или несколько десятков микрофарад для накопления и сброса (например, за цикл в 20 мкс (50 кГц)) электрического заряда, соответствующего 7 А, в течение 10 мкс или электрического заряда в 70 микроампер-секунд (мкАс).

Регулирование и управление зарядом и разрядом конденсаторов дополнительного блока 125 электропитания обеспечивается цепями управления, связанными с дополнительным блоком 125 электропитания или встроенными в основной блок 110 электропитания таким образом, чтобы позволять этому дополнительному блоку 125 электропитания обеспечивать поочередно два разных уровня мощности.

Первый уровень мощности соответствует низкой мощности, которая позволяет заполнить разрядный канал инертными атомами, тогда как второй уровень мощности соответствует высокой мощности, например, подаче тока 7-10 А при напряжении 400 В - 1 кВ в течение промежутка времени 5-10 мкс, что для каждого импульса высокой мощности соответствует энергии, которая в типичном случае может составлять от 14 мДж (7 А, 400 В и 5 мкс) до 100 мДж (10 А, 1 кВ и 10 мкс) для диапазона величин, считающихся предпочтительными, хотя и не ограничительными.

Уровень высокой мощности соответствует процессу ионизации/ускорения в разрядном канале двигателя. Тот факт, что уровень высокой мощности пульсирует, позволяет выбирать его достаточно высокие величины, которые приводят к высоким удельным импульсам без уменьшения срока службы двигателя.

Говоря в общих чертах, основной блок 110 электропитания и дополнительный блок 125 электропитания образованы электрическими цепями, которые предназначены для того, чтобы, во-первых, подводить низкую мощность к устройству 105 управления расходом газа, а во-вторых, подводить высокую мощность к электромагнитным катушкам, находящимся в корпусе 20, и также к катодам 40А и 40В, взаимодействующим с анодом 25. Основной блок 110 электропитания и дополнительный блок 125 электропитания составляют по меньшей мере два отдельных модуля питания, соединенных последовательно и/или параллельно, вследствие чего становится возможным переход между двумя уровнями мощности, требуемыми для желаемого функционирования двигателя.

Фильтр 120 может быть образован фильтрующими элементами, размещенными в модулях питания, являющихся компонентами блоков 110 и 125, чтобы защитить их от эффектов электромагнитной совместимости (ЕМС), возникающих из-за двигателя.


РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА
РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА
РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА
РЕАКТИВНЫЙ ДВИГАТЕЛЬ НА ОСНОВЕ ЭФФЕКТА ХОЛЛА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 928.
20.07.2013
№216.012.577a

Устройство управления цапфой лопатки с переменным углом установки, статор, содержащий такое устройство управления, компрессор, содержащий такой статор, и газотурбинный двигатель, содержащий такой компрессор

Устройство управления цапфой лопатки с переменным углом установки содержит рычаг управления, цапфу и два самоустанавливающихся подшипника скольжения. Верхний конец цапфы присоединен к рычагу управления, а нижний - к лопатке. Первый самоустанавливающийся подшипник скольжения установлен на нижнем...
Тип: Изобретение
Номер охранного документа: 0002488002
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57a4

Устройство установки свечи зажигания в камере сгорания газотурбинного двигателя, система зажигания газотурбинного двигателя и газотурбинный двигатель

Устройство установки свечи зажигания расположено в камере сгорания газотурбинного двигателя, размещенной внутри корпуса, в котором камера сгорания имеет ось YY. Устройство установки свечи зажигания содержит канал с осью XX, а также подвижную направляющую свечи, позволяющую реагировать на...
Тип: Изобретение
Номер охранного документа: 0002488044
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5973

Система воздушных винтов противоположного вращения с устройством флюгирования их лопастей

Система (1) воздушных винтов противоположного вращения газотурбинного двигателя летательного аппарата содержит первый и второй винты (6, 8), каждый из которых включает в себя систему (26, 56) управления установкой лопастей. Указанная система управления содержит вращающиеся средства (38, 68)...
Тип: Изобретение
Номер охранного документа: 0002488520
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a24

Ротор вентилятора для газотурбинного двигателя, газотурбинный двигатель, содержащий такой ротор, и прокладка хвостовика лопасти для такого ротора

Ротор вентилятора газотурбинного двигателя содержит диск, несущий лопасти, хвостовики которых вставлены в пазы, размещенные по внешней периферии диска, и прокладки, каждая из которых размещена между дном паза диска и соответствующим хвостовиком лопасти. Входной конец каждой прокладки...
Тип: Изобретение
Номер охранного документа: 0002488697
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a25

Компрессорный модуль турбомашины, уплотнительный диск внутренней камеры для такого модуля и турбомашина, содержащая такой компрессорный модуль

Компрессорный модуль турбомашины включает в себя компрессор низкого давления и компрессор высокого давления, валы которых направляются в подшипниках, и радиальные трубы наддува внутренней камеры. Валы отделены от внутренней камеры, содержащей валы компрессоров, лабиринтными уплотнениями,...
Тип: Изобретение
Номер охранного документа: 0002488698
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a27

Ступень турбомашины, компрессор, турбина, турбомашина, содержащие такую ступень, и замок для такой ступени

Ступень турбомашины содержит лопаточный диск, окруженный разделенным на сектора кольцом, закрепленным на корпусе и содержащим окружной выступ, прижимаемый в радиальном направлении па кольцевом рельсе корпуса при помощи замков с C-образным сечением. Каждый замок содержит внутреннюю и наружную...
Тип: Изобретение
Номер охранного документа: 0002488700
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a39

Диффузор газотурбинного двигателя и газотурбинный двигатель, содержащий такой диффузор

Диффузор газотурбинного двигателя содержит две кольцевые перегородки, проходящие внутри друг друга и соединенные между собой, по существу, радиальными лопатками. Нижний по потоку периферийный край по меньшей мере одной из перегородок содержит выемки, равномерно распределенные вокруг продольной...
Тип: Изобретение
Номер охранного документа: 0002488718
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5ad2

Способ определения условий фазы для механической обработки детали с регулируемой скоростью резки

Изобретение относится к средству определения условий для механической обработки детали. Техническим результатом является повышение точности определения условий резки. Для этого предложен способ определения условий стадии механической обработки детали при регулировании скорости резки между...
Тип: Изобретение
Номер охранного документа: 0002488871
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5d54

Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы. Получают галогенид путем реакции между галогеном и...
Тип: Изобретение
Номер охранного документа: 0002489513
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5d90

Охлаждаемая лопатка газотурбинного двигателя, способ ее сборки, направляющий сопловый аппарат газотурбинного двигателя, турбина, содержащая указанный аппарат, газотурбинный двигатель

Настоящее изобретение относится к охлаждаемой лопатке, составляющей направляющий аппарат газотурбинного двигателя. Охлаждаемая лопатка включает в себя внутреннюю полку, наружную полку и перо. Перо проходит между внутренней полкой и наружной полкой. Охлаждаемая лопатка имеет полость вдоль пера и...
Тип: Изобретение
Номер охранного документа: 0002489573
Дата охранного документа: 10.08.2013
Показаны записи 91-100 из 668.
20.07.2013
№216.012.5779

Лопатка рабочего колеса турбомашины и турбомашина

Лопатка рабочего колеса турбомашины содержит аэродинамический профиль и полку на его конце. Лопатка выполнена с возможностью образования с множеством идентичных лопаток кольца, содержащего аэродинамические профили, расположенные радиально на нем. Профиль спинки аэродинамического профиля у...
Тип: Изобретение
Номер охранного документа: 0002488001
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.577a

Устройство управления цапфой лопатки с переменным углом установки, статор, содержащий такое устройство управления, компрессор, содержащий такой статор, и газотурбинный двигатель, содержащий такой компрессор

Устройство управления цапфой лопатки с переменным углом установки содержит рычаг управления, цапфу и два самоустанавливающихся подшипника скольжения. Верхний конец цапфы присоединен к рычагу управления, а нижний - к лопатке. Первый самоустанавливающийся подшипник скольжения установлен на нижнем...
Тип: Изобретение
Номер охранного документа: 0002488002
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.57a4

Устройство установки свечи зажигания в камере сгорания газотурбинного двигателя, система зажигания газотурбинного двигателя и газотурбинный двигатель

Устройство установки свечи зажигания расположено в камере сгорания газотурбинного двигателя, размещенной внутри корпуса, в котором камера сгорания имеет ось YY. Устройство установки свечи зажигания содержит канал с осью XX, а также подвижную направляющую свечи, позволяющую реагировать на...
Тип: Изобретение
Номер охранного документа: 0002488044
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.5973

Система воздушных винтов противоположного вращения с устройством флюгирования их лопастей

Система (1) воздушных винтов противоположного вращения газотурбинного двигателя летательного аппарата содержит первый и второй винты (6, 8), каждый из которых включает в себя систему (26, 56) управления установкой лопастей. Указанная система управления содержит вращающиеся средства (38, 68)...
Тип: Изобретение
Номер охранного документа: 0002488520
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a24

Ротор вентилятора для газотурбинного двигателя, газотурбинный двигатель, содержащий такой ротор, и прокладка хвостовика лопасти для такого ротора

Ротор вентилятора газотурбинного двигателя содержит диск, несущий лопасти, хвостовики которых вставлены в пазы, размещенные по внешней периферии диска, и прокладки, каждая из которых размещена между дном паза диска и соответствующим хвостовиком лопасти. Входной конец каждой прокладки...
Тип: Изобретение
Номер охранного документа: 0002488697
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a25

Компрессорный модуль турбомашины, уплотнительный диск внутренней камеры для такого модуля и турбомашина, содержащая такой компрессорный модуль

Компрессорный модуль турбомашины включает в себя компрессор низкого давления и компрессор высокого давления, валы которых направляются в подшипниках, и радиальные трубы наддува внутренней камеры. Валы отделены от внутренней камеры, содержащей валы компрессоров, лабиринтными уплотнениями,...
Тип: Изобретение
Номер охранного документа: 0002488698
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a27

Ступень турбомашины, компрессор, турбина, турбомашина, содержащие такую ступень, и замок для такой ступени

Ступень турбомашины содержит лопаточный диск, окруженный разделенным на сектора кольцом, закрепленным на корпусе и содержащим окружной выступ, прижимаемый в радиальном направлении па кольцевом рельсе корпуса при помощи замков с C-образным сечением. Каждый замок содержит внутреннюю и наружную...
Тип: Изобретение
Номер охранного документа: 0002488700
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5a39

Диффузор газотурбинного двигателя и газотурбинный двигатель, содержащий такой диффузор

Диффузор газотурбинного двигателя содержит две кольцевые перегородки, проходящие внутри друг друга и соединенные между собой, по существу, радиальными лопатками. Нижний по потоку периферийный край по меньшей мере одной из перегородок содержит выемки, равномерно распределенные вокруг продольной...
Тип: Изобретение
Номер охранного документа: 0002488718
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5ad2

Способ определения условий фазы для механической обработки детали с регулируемой скоростью резки

Изобретение относится к средству определения условий для механической обработки детали. Техническим результатом является повышение точности определения условий резки. Для этого предложен способ определения условий стадии механической обработки детали при регулировании скорости резки между...
Тип: Изобретение
Номер охранного документа: 0002488871
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5d54

Способ алюминирования из паровой фазы полых металлических деталей газотурбинного двигателя

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы. Получают галогенид путем реакции между галогеном и...
Тип: Изобретение
Номер охранного документа: 0002489513
Дата охранного документа: 10.08.2013
+ добавить свой РИД