×
20.06.2016
216.015.48a2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕНЗОРА ИНЕРЦИИ КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ

Вид РИД

Изобретение

№ охранного документа
0002587764
Дата охранного документа
20.06.2016
Аннотация: Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси с угловой скоростью не менее 2°/с. Измеряют в системе строительных осей КА направления на регистрируемые звезды и угловую скорость КА до определённого момента времени. Последний зависит от времени закрутки КА и интервала движения КА, слабо возмущенного действием гравитационного градиента и вычисляемого с некоторым коэффициентом надежности. Опознают указанные звезды и определяют в ИСК направления на них. Тензор инерции КА определяют по указанным направлениям на звезды и значениям угловой скорости КА. Технический результат изобретения заключается в повышении достоверности определении тензора инерции КА, в т.ч. при отсутствии на его борту инерционных исполнительных органов.
Основные результаты: Способ определения тензора инерции космического аппарата в полете, включающий инерциальную ориентацию и развороты космического аппарата, отличающийся тем, что ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую к оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω не менее 2 град/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени T = T+ Δt, , где T - момент времени выполнения закрутки космического аппарата,Δt - интервал времени слабо возмущенного движения космического аппарата,Ω - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции,R - радиус орбиты,µ - гравитационный параметр Земли,K - коэффициент надежности, опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.

Изобретение относится к космической технике и может быть использовано для уточнения массово-инерционных характеристик космических аппаратов (КА).

Тензор инерции любого твердого тела является важной характеристикой для управления его движением. Поэтому был разработан ряд способов для определения тензора инерции тела, описанных, например, в [1] (Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 C1). В способе-аналоге [1] телу сообщается заданное движение и по измерениям параметров движения определяется тензор инерции тела. Главный недостаток способа [1] и других аналогичных способов заключается в отсутствии возможности их применения для определения тензора инерции КА в полете.

Вместе с тем, следует отметить, что тензор инерции меняется в полете КА. Это изменение происходит за счет расходывания топлива КА в полете, пристыковки и отстыковки от КА новых блоков и элементов, перемещения грузов внутри пилотируемого КА космонавтами и т.д. Поэтому тензор инерции должен определяться в полете КА, т.к. он является важной характеристикой для управления движением КА. Особенно важно точное знание рассогласования главных центральных осей инерции КА и строительных осей КА, т.к. номинально двигатели для управления движением КА устанавливаются обычно относительно строительных осей аппарата. При возникновении нештатного рассогласования за счет указанных причин между строительными осями КА и его главными осями инерции возникнут серьезные проблемы для управления движением КА.

Для определения тензора инерции КА в полете был предложен способ [2] (Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации. Препринт ИПМ им. М.В. Келдыша №17, 2006 г.). Предложенный способ [2], взятый авторами за прототип, включает инерциальную ориентацию и развороты КА и измерение суммарного кинетического момента маховиков. При изменении ориентации КА путем его разворотов, по измерениям суммарного кинетического момента маховиков (инерционных исполнительных органов) определяется тензор инерции КА в полете.

Недостаток способа-прототипа связан с низкой точностью определения тензора инерции КА и необходимостью использования измерений от инерционных исполнительных органов (ИИО) [2]. В то же время многие КА не имеют в своем составе ИИО. Например, транспортный грузовой корабль (ТГК) «Прогресс», являющийся основным транспортным грузовым кораблем в программе МКС, не имеет в своем составе ИИО. Вместе с тем, за счет перемещения грузов космонавтами внутри ТГК «Прогресс» и расхода большого количества топлива на ТГК, его тензор инерции меняется в процессе полета. Особенно важно знание углового рассогласования главных осей инерции ТГК и его строительных осей, т.к. двигатели ориентации и коррекции ТГК установлены относительно строительных осей корабля.

Задачей, на решение которой направлено настоящее изобретение, является определение тензора инерции КА в полете.

Технический результат предлагаемого изобретения заключается в надежном определении тензора инерции космического аппарата даже при отсутствии на его борту ИИО.

Технический результат достигается тем, что в способе определения тензора инерции космического аппарата в полете, включающем инерциальную ориентацию и развороты космического аппарата, ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω2 не менее 2°/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени

T=T0+Δt, где ,

где T0 - момент времени выполнения закрутки космического аппарата;

Δt - интервал времени слабо возмущенного движения космического аппарата;

Ω2 - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции;

R - радиус орбиты;

µгр - гравитационный параметр Земли;

K - коэффициент надежности,

опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды, и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.

За счет выполнения предлагаемых действий определение тензора инерции КА осуществляется надежно и даже при отсутствии на борту КА ИИО. Действия способа обеспечивают слабо возмущенное движение КА на интервале времени Δt. Это позволяет надежно определять тензор инерции КА даже при отсутствии на его борту ИИО. На угловое движение КА оказывают влияние, в основном, гравитационный и аэродинамический возмущающие моменты, причем основное влияние на большинство КА оказывает гравитационный момент.

Соотношение для Δt получено для КА, имеющего вытянутую форму, с учетом действия на него гравитационного возмущающего момента. При выводе соотношения для Δt учитывается максимальное значение гравитационного момента, действующего вокруг поперечной оси КА. Для повышения надежности обеспечения слабо возмущенного движения на интервале времени Δt вводится специальный коэффициент надежности К. Коэффициент надежности может быть взят равным, например, 10. Для ТГК «Прогресс», например, Δt оказывается равным нескольким десяткам минут. На этом интервале времени угловое движение КА считается невозмущенным. Тензор инерции космического аппарата в этом случае по измеренным и определенным параметрам определяют минимизацией функционала

,

на решениях системы уравнений (уравнений Эйлера, записанных в безразмерном виде)

, , ,

где: , , ,

ω1, ω2, ω3 - компоненты угловой скорости на главные центральные оси инерции;

I1, I2, I3 - моменты инерции космического аппарата;

в - элементы матрицы перехода между системами координат, образованными строительными осями и главными центральными осями инерции космического аппарата;

- приближенные измеренные значения компонент угловой скорости в строительной системе координат.

Минимизация ФΩ является первым этапом определения искомых величин и осуществляется методом Гаусса-Ньютона.

ФΩ рассматривается как функция набора из восьми параметров ωi(tо) (i=1, 2, 3), µ, µ′, γ, α, β. Углы γ, α, β задают положение строительной системы координат оу1у2у3 относительно системы координат ох1х2х3, образованной главными центральными осями инерции КА.

Система оу1у2у3 может быть переведена в систему ох1х2х3 тремя последовательными поворотами: 1) на угол α вокруг оси оу2, 2) на угол β вокруг новой оси оу3, 3) на угол γ вокруг новой оси оу1, совпадающей с осью ох1.

Хотя приведенные уравнения Эйлера имеют решения, выражаемые через эллиптические функции, при минимизации ФΩ, как показывает практический опыт, целесообразно их интегрировать численно.

Как показывает опыт обработки информации при решении аналогичных задач минимизации, искомые параметры практически всегда могут быть определены при минимизации функционала ФΩ. Это обусловлено в том числе тем обстоятельством, что на рассматриваемом интервале обработки угловое движение КА можно считать невозмущенным.

На втором этапе для повышения надежности определения параметров тензора инерции КА минимизируется функционал, составленный аналогично по определенным и измеренным направлениям на звезду.

Наиболее ценным для управления движением КА является точное знание элементов матрицы вik (т.е. углов γ, α, β). Это обеспечивается выполнением всей совокупности действий и приемов способа.

Определив истинное положение главных центральных осей инерции КА, можно осуществлять управление с учетом их положения относительно строительных осей КА. Закрутку КА на Солнце можно, например, выполнять не вокруг строительной оси, перпендикулярной плоскости панелей солнечных батарей, а вокруг главной центральной оси инерции КА, ей ближайшей. Это повысит стабильность вращения и увеличит приход электрической энергии.

В настоящее время технически все готово для реализации предложенного способа, например, на ТГК «Прогресс» или других КА. На ТГК «Прогресс» отсутствуют ИИО. Однако система управления ТГК «Прогресс» позволяет выполнять инерциальную ориентацию, развороты и закрутку КА. Для измерения направлений на звезды может использоваться звездный датчик типа БОКЗ или ОЗД. Звезды, попавшие в поле зрения датчика, регистрируются в зависимости от заложенной в прибор яркости (могут регистрироваться звезды, например, до 6-ой звездной величины). Опознавание попавших в его поле зрения звезд осуществляется автоматически (по яркости звезд и угловому расстоянию между зарегистрированными звездами). На ТГК измеряются угловые скорости в строительной системе координат корабля, направление на Солнце (которое, строго говоря, является звездой). Для определения необходимых направлений и вычислений, ТГК снабжен бортовой вычислительной системой БВС.

Предложенный способ позволяет за счет выполнения отличительных действий и приемов надежно определять тензор инерции КА даже при отсутствии на его борту ИИО.

ЛИТЕРАТУРА

1. Способ определения тензора инерции и координат центра масс тела и устройство для его осуществления, патент RU 2348020 С 1.

2. Севастьянов Н.Н., Бранец В.Н., Банит Ю.Р., Беляев М.Ю., Сазонов В.В. «Определение тензора инерции геостационарных спутников «Ямал» по телеметрической информации. Препринт ИПМ им. М.В. Келдыша №17, 2006 г.

Способ определения тензора инерции космического аппарата в полете, включающий инерциальную ориентацию и развороты космического аппарата, отличающийся тем, что ориентируют космический аппарат, стабилизируя в инерциальной системе координат его строительную ось, ближайшую к оси, соответствующей максимальному моменту инерции, выполняют закрутку космического аппарата вокруг этой строительной оси с угловой скоростью Ω не менее 2 град/с, измеряют в строительной системе координат космического аппарата направления на регистрируемые звезды и угловую скорость космического аппарата до момента времени T = T+ Δt, , где T - момент времени выполнения закрутки космического аппарата,Δt - интервал времени слабо возмущенного движения космического аппарата,Ω - угловая скорость закрутки вокруг строительной оси, ближайшей оси максимального момента инерции,R - радиус орбиты,µ - гравитационный параметр Земли,K - коэффициент надежности, опознают зарегистрированные звезды, определяют в инерциальной системе координат направления на опознанные звезды и определяют тензор инерции космического аппарата по измеренным и определенным на интервале времени Δt направлениям на опознанные звезды и измерениям угловой скорости космического аппарата.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕНЗОРА ИНЕРЦИИ КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ
Источник поступления информации: Роспатент

Показаны записи 261-270 из 377.
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
Показаны записи 261-270 из 323.
25.08.2017
№217.015.c4fe

Центробежное рабочее колесо

Изобретение относится к насосостроению и может быть использовано в составе электронасосных агрегатов систем терморегулирования изделий ракетно-космической техники, а также в химической промышленности. Центробежное рабочее колесо содержит единый со ступицей (1) ведущий диск (2), покрывной диск...
Тип: Изобретение
Номер охранного документа: 0002618372
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
+ добавить свой РИД