×
10.06.2016
216.015.46d4

Результат интеллектуальной деятельности: СМАЗОЧНАЯ КОМПОЗИЦИЯ С НАНОДИСПЕРСНЫМ ДИСЕЛЕНИДОМ ВОЛЬФРАМА

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к составу композиционного смазочного материала на базе масла МС-20, являющегося смазочной основой, и дисперсной присадки, при этом в качестве данной присадки используют продукт, представляющий собой нанодисперсные частицы диселенида вольфрама пластинчатой формы размером 60×5 нм, полученные методом газофазного синтеза, формула которых WSe, где W - вольфрам, Se - селен; в данном масле концентрация нанодисперсных частиц составляет 0,5-4% по массе. Техническим результатом настоящего изобретения является получение смазочной композиции снижающей трение и износ в ответственных узлах трения путем увеличения несущей способности смазочного слоя и уменьшения его сдвигового сопротивления, снижение адгезионного изнашивания пар трения, изготовленных из различных марок сталей; повышение эффективности смазочного материала при эксплуатации в тяжелонагруженных узлах трения; снижение интенсивного изнашивания пар в режиме приработки. 1 табл., 3 ил.
Основные результаты: Состав композиционного смазочного материала на базе масла МС-20, являющегося смазочной основой, и дисперсной присадки, отличающийся тем, что в качестве данной присадки используют продукт, представляющий собой нанодисперсные частицы диселенида вольфрама пластинчатой формы размером 60×5 нм, полученные методом газофазного синтеза, формула которых WSe, где W - вольфрам, Se - селен; в данном масле концентрация нанодисперсных частиц составляет 0,5-4% по массе.

Данное изобретение относится к области создания смазочных композиций, обладающих повышенной нагрузочной способностью, предназначенных для применения в тяжелонагруженных ответственных узлах трения.

Известны смазочные композиции, в состав которых входят дихалькогениды различных комплексообразующих металлов, и способы их получения. Данные смазочные составы являются термостойкими и обладают хорошими противоизносными свойствами благодаря содержанию в них дихалькогенидов комплексообразующих металлов, таких как MoSe2, WS2, MoS2, NbS2, NbSe2, TaSe2, TaS2, где Mo - молибден, S - сера, Nb - нубидий, Та - талий [2, 18, 19].

Однако приведенные выше известные смазочные составы на данный момент теряют актуальность, ввиду добавления в них добавок микроразмеров, которые подвергаются седиментации в смазочной композиции, что делает ее неэффективной и нестабильной при использовании.

Наиболее близким к предлагаемому техническому решению является смазочный композиционный материал, в котором в качестве смазочной основы использованы масла или низкомолекулярные неорганические соединения (пластичные смазочные материалы), а в качестве функциональной присадки использованы порошки диселенидов вольфрама или молибдена в количестве 1-20% в массе. Полученная композиция обрабатывается в ультразвуковом поле, мощность которого составляет 3-5 Вт/см2 [1, 14].

Такие смазочные составы обеспечивают высокую коррозионную стойкость узла трения, повышает его несущую способность и улучшает консервационные свойства, а за счет обработки данного состава в ультразвуковом поле обеспечивается его устойчивость и однородность.

Недостатками данного прототипа являются:

- не указан диапазон размеров частиц добавляемых порошковых присадок;

- не указаны данные по седиментационной стабильности и устойчивости к агрегированию данных композиций, т.е. невозможно проследить связь между заявленными свойствами и действительностью без проведения дополнительных исследований с данными составами;

- не указаны триботехнические свойства полученных смазочных композиций;

- не указаны параметры оптимизации концентрации дисперсных добавок, а также способ получения данных присадок.

Задачей данного изобретения является снижение трения и износа в ответственных узлах трения путем увеличения несущей способности смазочного слоя и уменьшения его сдвигового сопротивления; снижение адгезионного изнашивания пар трения, изготовленных из различных марок сталей; повышение эффективности смазочного материала при эксплуатации в тяжелонагруженных узлах трения; снижение интенсивного изнашивания пар в режиме приработки.

Поставленная задача решается применением в качестве присадки нанодисперсного диселенида вольфрама. Размер частиц данной добавки составляет 60×5 нм. Такие частицы по классификации академика Витязя П.А. называют нанометровыми или нанофазными [3, 4].

Технология получения таких частиц различна. В данном изобретении впервые используется метод газофазного синтеза. Полученные данным методом наноматериалы имеют пластинчатую форму. Из уровня техники известно об улучшении триботехнических характеристик в случае использования частиц пластинчатой формы, а также наноразмерных частиц [15, 16, 17].

Метод газофазного синтеза заключается в следующем.

Наночастицы дисульфида (диселенида) вольфрама синтезируются в проточном реакторе вертикального типа путем пиролиза гексакарбонила вольфрама W(CO)6 в атмосфере инертного газа (Не и Ar) в присутствии паров селена [5, 6, 7, 8, 9, 10 и др.].

В результате данного процесса и применения дополнительных операций по очистке получается порошок без примесей. Данный порошок в необходимом соотношении смешивают с маслом МС-20. Для обеспечения гомогенизации состава смешивание осуществляют с использованием диспергатора. Время гомогенизации находится в диапазоне от 5-15 минут.

Гомогенность полученного состава контролируют по критериям вязкости и интенсивности рассеяния светового потока при прохождении через стеклянную пластину с нанесенным на поверхность слоем смазочной композиции определенной толщины.

Заявляемая концентрация нанодисперсной присадки находится в пределах 0,5-4% по массе.

Существенность отличий данного изобретения от прототипа состоит в том, что добавление нанодисперсных частиц относительно небольшой концентрации обеспечивает:

- увеличение предельной нагрузочной способности смазочного слоя (почти в 3 раза) при снижении момента трения почти в 2 раза (см. рис. 1 и 2);

- устойчивость к седиментации и агрегированию;

- использование в тяжелонагруженных узлах трения, а также в узлах, работающих в режиме частых запусков и остановок;

- уменьшение интенсивности адгезионного изнашивания пар трения.

- впервые используются полученные методом газофазного синтеза наночастицы диселенида вольфрама пластинчатой (чешуйчатой) формы.

Исследовались смазочные композиции, содержащие WSe2, в следующих концентрациях: 0,5 масс. %, 1 масс. %, 2 масс. %, 4 масс. %. Остальная часть композиции - авиационное масло МС-20.

Для приготовления составов использовались порошки наночастиц диселенида вольфрама, синтезированные в ФГАОУ ВО Санкт-Петербургском Политехническом Университете.

Триботехнические характеристики композиционных смазочных материалов, а также сравнение свойств пластинчатых и сферических частиц диселенида вольфрама в среде масла МС-20 приведены в таблице 1.

Триботехнические характеристики смазочных композиций оценивали на двух машинах трения:

1. Четырехшариковая машина трения ЧШМ-3,2 в соответствии с ГОСТ 9490-75 [12] при трении скольжения и частоте вращения вала n=430 об/мин. Нагрузка на 4-шариковую пирамиду изменялась в диапазоне 130-10000 Н.

Время испытания составило 10±0,2 с.

Оценивалась нагрузка сваривания, характеризующая предельную нагрузочную способность смазочного слоя.

2. Универсальная машина трения 2070 СМТ-1 в соответствии с ГОСТ Р 51860-2002 [13] при трении скольжения. Контактное взаимодействие образца и контробразца реализовывалось с нормальной силой 147 Н. Частота вращения образца составляла 500 об/мин. Путь трения при испытаниях составил S=2000 м, измерения износа проводились через каждые 500 м. Оценивался момент трения в трибосопряжении.

Как следует из данных таблицы 1, заявленные составы 5-8 в заявленных соотношениях превосходят по триботехническим характеристикам базовый смазочный материал (состав 1). При сравнении по антиокислительным свойствам заявляемый состав близок к прототипу, сравнение по триботехническим характеристикам заявляемого состава и прототипа не реализуется в связи с отсутствием этих данных в прототипе, а при сравнении с базовым смазочным материалом заявляемый состав в заявленных соотношениях компонентов его превосходит.

Для оценки устойчивости по агрегированию и седиментации исследовали смазочную композицию, содержащую 1% по массе WSe2 в масле МС-20. Данную композицию объемом V=30 мл заливали в небольшие пластиковые емкости, объем которых VE=40 мл. При этом высота, на которой находилась граница раздела смазочного материала с воздухом, составила hmax=150 мм.

После заполнения емкостей смазочные композиции оставили в состоянии покоя на интервал времени длиной Δtxp=l год, при средней температуре внешней среды равной 22°C. Через указанный интервал времени методом измерения вязкости проб (взятых на разных уровнях) оценили устойчивость смазочных композиций (рис. 3). Для этого из каждой емкости брали по три пробы и измеряли их вязкость. Объем каждой пробы жидкой смазочной композиции составлял VП=10 мл.

В результате получили зависимость средней динамической вязкости проб смазочных композиций от высоты (рис. 3).

После взятия проб проводили визуальную оценку осадков на дне емкостей. Обнаружены плотные осадки малого объема. Эти осадки образовались при седиментации крупных частиц системы, которые неизбежно присутствуют в ней в силу полидисперсности.

На основании проведенного исследования устойчивости смазочной композиции с диселенидом вольфрама установлено:

- в смазочной композиции устанавливается седиментационно-диффузионное равновесие, при котором имеет место наличие градиента вязкости;

- градиент вязкости незначителен, что свидетельствует о хорошей кинетической устойчивости композиции;

- исследуемая смазочная композиция являются агрегативно-устойчивой дисперсной системой, поскольку в результате седиментации крупных частиц образуется плотный осадок малого объема;

- в реальных условиях эксплуатации смазочной композиции, при функционировании узлов трения, происходит диспергирование наноразмерного диселенида вольфрама, в связи с чем и без того малый градиент вязкости устремляется к нулю. Узлы трения, функционирующие без больших простоев, способны, таким образом, поддерживать изотропию смазочной композиции по вязкости.

Композиционный смазочный материал может быть использован в тяжело-нагруженных узлах трения машин и механизмов, эксплуатируемых в условиях воздействия абразивных частиц, вибраций, воздействия агрессивных сред, при изменении передаваемого момента.

Источники информации

1. Заявка на изобретение №94031940 РФ, МПК С10М 169/04. Смазочный состав и способ его получения / Лобова Т.А., Леонтьев Н.И., Литвинов А.П., Чулина Г.Ф.; заявитель Чулина Г.Ф. - 94031940/04, 05.09.1994; заявлено 10.08.1996. - 4 с: ил.

2. Кламанн Д. Смазки и родственные продукты. Синтез. Свойства. Применение. Международные стандарты.: пер. с англ.; под ред. Ю.С. Заславского [Текст] / Д. Кламанн. - М.: Химия, 1988. - 488 с.

3. Влияние материала фрикционной пары на триботехнические свойства консистентной смазки, модифицированной ультрадисперсными алмазами / Витязь П.А., Жорник В.И., Кукареко В.А., Верещагин В.А. // Трение и износ. - 2000. - Т. 21, №5, с. 527-533.

4. Витязь П.А. Перспективные нанофазные материалы на основе ультрадисперсных алмазов // Теоретические и технологические основы упрочнения и восстановления изделий машиностроения: Сб. ст. - Новополоцк, 2001. С. 4-8.

5. Tolochko О.V., Vasilieva E.S., Kaidash Е.А., Cheong D.-I, Kim E.-P. Synthesis and applications of Tungsten-Based Ultrafine Particles // 17-th International Baltic Conference "Material Engineering 2008". Lithuania, Kaunas: Technologija. Pp. 45-46.

6. Vasilieva E.S., Vahhi I.E., Kovalev E., Ignatiev M., Kim D., Kim B.-K. Production of WS2 Structures by CVC Method // 17-th International Baltic Conference "Material Engineering 2008". Lithuania, Kaunas: Technologija. Pp. 54-55.

7. Vasilieva E.S., Tolochko O.V., Kim B.-K., Lee D.-W. Synthesis of WS2 Structures by Chemical Vapor Condensation Method // Book of abstracts of 8th Conference of Solid State Chemistry, July 6-11, 2008, Bratislava, Slovak Republic, Book of abstracts, p. 5196.

8. Nasibulin A.G., Ahonen P.P., Richard O. et al. // J. Nanoparticle Res. 2001. Vol. 3. Issue 5 - 6. P. 383-398.

9. Choi C.J., Tolochko O., Kim B.K. // Materials Letters. 2002. V. 56. P. 289-294.

10. Ahonen P.P., Joutsensaari J., Richard O. et al. // J. Aerosol Sci. 2001. V.32 (5). P. 615-630. 104.

11. Васильева E.C., Игнатьев М.Б., Ковалев Е.П., Ли Д.В. Газофазный синтез дисперсных частиц дисульфида вольфрама и их применение // Физика и механика материалов. Вестник Новгородского Государственного Университета №50. 2009. С. 7-10.

12. ГОСТ 9490-75. Материалы смазочные жидкие и пластичные. Метод определения трибологических характеристик на четырехшариковой машине [Текст]. - М.: Изд-во стандартов, 1975. - 14 с.

13. ГОСТ Р 51860-2002. Обеспечение износостойкости изделий. Оценка противоизносных свойств смазочных материалов методом «шар - цилиндр» [Текст]. - М.: Изд-во стандартов, 2002. - 8 с.

14. RU 2095399 С1, (Лобова Т.А., Леонтьев Н.И., Литвинов А.П., Чулина Г.Ф.) 10.11.1997. (6 стр.).

15. US 4965001 A1, (Atochem North America, Ink.) 23.10.1990 (7 стр.).

16. US 3965016 A1, (Pennwalt Corporation) 22.06.1976 (3 стр.).

17. V.L. Kalikhman, E.P. Gladchenko, A.G. Duksina, I.I. Pravoverova. «Anti-friction properties of disulfides and diselenides with a lamellar structures Soviet Powder Metallurgy and Metal Ceramics, 1973, Volume 12, Issue 8, pp. 666-668.

18. US 3427244 Al, (WESTINGHOUSE ELECTRIC CORP.) 11.02.1969.

19. CN 102504910 A, (ZHENJIANG ZHONGFU COMPOSITE MATERIAL CO.) 20.06.2012.

Состав композиционного смазочного материала на базе масла МС-20, являющегося смазочной основой, и дисперсной присадки, отличающийся тем, что в качестве данной присадки используют продукт, представляющий собой нанодисперсные частицы диселенида вольфрама пластинчатой формы размером 60×5 нм, полученные методом газофазного синтеза, формула которых WSe, где W - вольфрам, Se - селен; в данном масле концентрация нанодисперсных частиц составляет 0,5-4% по массе.
СМАЗОЧНАЯ КОМПОЗИЦИЯ С НАНОДИСПЕРСНЫМ ДИСЕЛЕНИДОМ ВОЛЬФРАМА
СМАЗОЧНАЯ КОМПОЗИЦИЯ С НАНОДИСПЕРСНЫМ ДИСЕЛЕНИДОМ ВОЛЬФРАМА
СМАЗОЧНАЯ КОМПОЗИЦИЯ С НАНОДИСПЕРСНЫМ ДИСЕЛЕНИДОМ ВОЛЬФРАМА
Источник поступления информации: Роспатент

Показаны записи 81-90 из 156.
10.12.2014
№216.013.0cc5

Упругодемпферная опора турбореактивного двигателя

Изобретение относится к упругодемпферным опорам газотурбинных турбореактивных двигателей авиационного и наземного применения. Упругодемпферная опора турбореактивного двигателя включает внутреннюю втулку, соединенную с С-образным упругим элементом, опорное кольцо и задний фланец лабиринта....
Тип: Изобретение
Номер охранного документа: 0002534686
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1786

Способ изготовления заготовок для волоконных световодов на основе кварцевого стекла, легированного азотом

Изобретение относится к области волоконной оптики и, в частности, к формированию заготовок волоконных световодов осаждением из газовой фазы. Техническим результатом изобретения является разработка режима изготовления заготовок для волоконных световодов на основе легированного азотом кварцевого...
Тип: Изобретение
Номер охранного документа: 0002537450
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17cf

Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов. Световод имеет сердцевину из нелегированного...
Тип: Изобретение
Номер охранного документа: 0002537523
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dec

Способ получения безобжиговой кварцевой керамики для стекловарения

Изобретение относится к керамической промышленности, а именно к технологии получения модифицированных керамических материалов на основе кварцевого стекла с повышенной высокотемпературной прочностью для изготовления керамических изделий различного назначения. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002539088
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.25a3

Двигатель внутреннего сгорания

Изобретение может быть использовано в двигателях внутреннего сгорания. Двигатель внутреннего сгорания включает в себя втулку (1) цилиндра, крышку (5) цилиндра, поршень (6) и шатун (7). У втулки (1) цилиндра выполнены приливы (2) у верхнего торца втулки с резьбовыми отверстиями под шпильки (3),...
Тип: Изобретение
Номер охранного документа: 0002541088
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.3078

Способ получения кристаллов фторидов щелочноземельных металлов

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости, предназначенной для передачи фотонного излучения с различной частотой и мощностью оптических сигналов. Кристаллы фторидов...
Тип: Изобретение
Номер охранного документа: 0002543876
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3112

Редан высокоскоростного судна из полимерных композиционных материалов

Изобретение относится к области судостроения и касается конструкции реданов высокоскоростных судов из полимерных композиционных материалов (ПКМ). Предложен редан высокоскоростного судна, поперечный полый, выполненный из полимерного композиционного материала и содержащий наружную обшивку и...
Тип: Изобретение
Номер охранного документа: 0002544030
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3820

Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионно-стойкой криогенной аустенитной высокопрочной свариваемой стали, предназначенной для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь...
Тип: Изобретение
Номер охранного документа: 0002545856
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a23

Охлаждаемая турбина

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и...
Тип: Изобретение
Номер охранного документа: 0002546371
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cb8

Способ изготовления многомодовых малодисперсионных световодов

Изобретение относится к волоконной оптике. Технический результат изобретения заключается в снижении уровня межмодовой дисперсии, что обеспечивает увеличение ширины полосы пропускания систем оптической связи. Осаждение слоев кварцевого стекла отражающей оболочки проводят с постоянной...
Тип: Изобретение
Номер охранного документа: 0002547032
Дата охранного документа: 10.04.2015
Показаны записи 81-90 из 130.
10.12.2014
№216.013.0cc5

Упругодемпферная опора турбореактивного двигателя

Изобретение относится к упругодемпферным опорам газотурбинных турбореактивных двигателей авиационного и наземного применения. Упругодемпферная опора турбореактивного двигателя включает внутреннюю втулку, соединенную с С-образным упругим элементом, опорное кольцо и задний фланец лабиринта....
Тип: Изобретение
Номер охранного документа: 0002534686
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1786

Способ изготовления заготовок для волоконных световодов на основе кварцевого стекла, легированного азотом

Изобретение относится к области волоконной оптики и, в частности, к формированию заготовок волоконных световодов осаждением из газовой фазы. Техническим результатом изобретения является разработка режима изготовления заготовок для волоконных световодов на основе легированного азотом кварцевого...
Тип: Изобретение
Номер охранного документа: 0002537450
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17cf

Радиационно-стойкий волоконный световод, способ его изготовления и способ повышения радиационной стойкости волоконного световода (варианты)

Группа изобретений относится к области волоконных световодов, стойких к воздействию ядерного и/или ионизирующего излучения. Волоконный световод получают методом химического осаждения кварцевого стекла из смеси исходных газообразных реагентов. Световод имеет сердцевину из нелегированного...
Тип: Изобретение
Номер охранного документа: 0002537523
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dec

Способ получения безобжиговой кварцевой керамики для стекловарения

Изобретение относится к керамической промышленности, а именно к технологии получения модифицированных керамических материалов на основе кварцевого стекла с повышенной высокотемпературной прочностью для изготовления керамических изделий различного назначения. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002539088
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.25a3

Двигатель внутреннего сгорания

Изобретение может быть использовано в двигателях внутреннего сгорания. Двигатель внутреннего сгорания включает в себя втулку (1) цилиндра, крышку (5) цилиндра, поршень (6) и шатун (7). У втулки (1) цилиндра выполнены приливы (2) у верхнего торца втулки с резьбовыми отверстиями под шпильки (3),...
Тип: Изобретение
Номер охранного документа: 0002541088
Дата охранного документа: 10.02.2015
10.03.2015
№216.013.3078

Способ получения кристаллов фторидов щелочноземельных металлов

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости, предназначенной для передачи фотонного излучения с различной частотой и мощностью оптических сигналов. Кристаллы фторидов...
Тип: Изобретение
Номер охранного документа: 0002543876
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3112

Редан высокоскоростного судна из полимерных композиционных материалов

Изобретение относится к области судостроения и касается конструкции реданов высокоскоростных судов из полимерных композиционных материалов (ПКМ). Предложен редан высокоскоростного судна, поперечный полый, выполненный из полимерного композиционного материала и содержащий наружную обшивку и...
Тип: Изобретение
Номер охранного документа: 0002544030
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3820

Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения

Изобретение относится к области металлургии, а именно к получению конструкционной коррозионно-стойкой криогенной аустенитной высокопрочной свариваемой стали, предназначенной для изготовления хладостойких высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь...
Тип: Изобретение
Номер охранного документа: 0002545856
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3a23

Охлаждаемая турбина

Охлаждаемая турбина авиационного газотурбинного двигателя содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенные с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, сопловые лопатки и...
Тип: Изобретение
Номер охранного документа: 0002546371
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3cb8

Способ изготовления многомодовых малодисперсионных световодов

Изобретение относится к волоконной оптике. Технический результат изобретения заключается в снижении уровня межмодовой дисперсии, что обеспечивает увеличение ширины полосы пропускания систем оптической связи. Осаждение слоев кварцевого стекла отражающей оболочки проводят с постоянной...
Тип: Изобретение
Номер охранного документа: 0002547032
Дата охранного документа: 10.04.2015
+ добавить свой РИД