×
10.06.2016
216.015.455c

Результат интеллектуальной деятельности: ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников. Согласно изобретению формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев неорганических и органических полупроводников, и в котором первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью. Изобретение обеспечивает увеличение коэффициента преобразования энергии светового излучения в электрическую энергию. 2 ил.
Основные результаты: Гибридный фотоэлектрический преобразователь, содержащий несколько слоев неорганических и органических полупроводников, отличающийся тем, что первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.

Область техники

Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников.

Предшествующий уровень техники

Известен гибридный фотоэлектрический преобразователь (ФЭП), содержащий пленку из полупроводникового полимерного широкозонного фотоэлектрического преобразователя и прозрачную пленку окиси титана (TiOx), размещенного на низкоомном кристаллическом кремнии, описанный в Евразийском патенте N017011, опубл. 2012.09.28 "СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ". При работе такого фотоэлектрического преобразователя, содержащего слой органического и неорганического полупроводников, носители зарядов электроны, образовавшиеся в полимерной пленке за счет поглощения в инфракрасной области спектра при прохождении через него многократно отраженных от межслойных границ солнечного излучения, транспортируются посредством пленки окиси титана в рабочую область кремния, где эти электроны суммируются с носителями зарядов, образовавшимися в слое кремния за счет поглощения в видимой области спектра. Таким образом, происходит увеличение эффективности преобразования солнечного света в электрический ток.

Недостатком этого ФЭПа является то, что в органическом слое преобразуется только небольшая часть спектра солнечного излучения и преобразование света, главным образом, происходит в неорганическом полупроводнике с узкой шириной запрещенной зоны.

Наиболее близкими к предлагаемому изобретению являются фотоэлектрические преобразователи, содержащие слои органических и неорганических полупроводников [Паращук Д.Ю., Кокорин А.И. "Современные фотоэлектрические и фотохимические методы преобразования солнечной энергии", Ж. Рос. хим. об-ва имени Д.И. Менделеева (ЖРХО), 2008, т. 52, N6, с. 113-114]. Эти ФЭП содержат органические полупроводники с шириной запрещенной зоны приблизительно 2 эВ и узкозонные неорганические полупроводники с шириной запрещенной зоны до 0,7 эВ, поэтому в них не происходит фотоэлектрического преобразования фотонов с энергией менее 0,7 эВ, соответствующих близкой инфракрасной области спектра солнечного излучения.

Задачей, решаемой изобретением, является расширение спектра светового излучения, поглощаемого в фотоэлектрическом преобразователе и приводящего к генерации электрического тока.

Техническим результатом, достигаемым при использовании изобретения, является увеличение коэффициента преобразования энергии светового излучения в электрическую энергию в фотоэлектрическом преобразователе (ФЭП), содержащем органические полупроводники и генерирующего электрический ток под действием солнечного излучения.

Технический результат достигается тем, что формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев неорганических и органических полупроводников, и в котором первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащий поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.

Краткое описание чертежей

Изобретение поясняется чертежами.

На фиг. 1 показано расположение слоев полупроводников в фотоэлектрическом преобразователе (ФЭП).

На фиг. 2 показана энергетическая диаграмма гетеропереходов между слоями полупроводников в ФЭП в условиях термодинамического равновесия при отсутствии светового облучения (в темноте).

Раскрытие изобретения

Устройство по заявляемому изобретению осуществляют следующим образом. Формируют многослойную структуру ФЭП, образованную несколькими слоями неорганических и органических полупроводников в порядке, показанном на Фиг. 1, где цифрами обозначены: 1 - обращенный к источнику света слой оксида цинка с дырочной проводимостью, 2 - слой политиофена с дырочной проводимостью, 3 - слой поли-3,4,-этилендиокситиофена, 4 - слой полимерного композита, содержащего поли-3,4,-этилендиокситиофен и перфторированный сульфокатионит, 5 - слой оксида цинка с электронной проводимостью.

Геометрические границы между слоями 1, 2, 3, 4 и 5 структуры ФЭП показаны на Фиг. 2 вертикальными линиями. Прямая горизонтальная линия Wf обозначает положение уровня энергии химического потенциала (уровня Ферми), одинакового во всех слоях в условиях термодинамического равновесия электронного газа при отсутствии солнечного излучения. Линиями, претерпевающими разрывы и изломы в областях контактов слоев, показаны относительно уровня химического потенциала уровни энергии электронов в вакууме W0, вблизи условного дна зона проводимости Wc и вблизи верха валентной зоны Wv.

Слои 1 и 5 выполнены из оксида цинка, являющегося полупроводником с шириной запрещенной зоны 3,2-3,6 эВ, который поглощает коротковолновую часть спектра солнечного излучения с длинами волн, меньшими 400 нм, и пропускает более 80% излучения с длинами волн 400-2000 нм. Оксид цинка может быть легирован донорами или акцепторами электронов для создания электронной или дырочной проводимости с большими значениями концентрации и подвижности носителей заряда и, соответственно, большой удельной проводимостью.

При контакте сильно легированных слоев 1 и 5 оксида цинка с дырочной и электронной проводимостью между ними возникает разность потенциалов, максимальное значение которой можно оценить как отношение значения ширины запрещенной зоны к заряду электрона, и которое может достигать 3,2-3,6 В. При расположении между слоями оксида цинка проводников или полупроводников контактная разность потенциалов между крайними слоями 1 и 5 структуры в случае соединения их внешней цепью останется неизменной. Между промежуточными слоями возникнут контактные разницы потенциалов, равные разностям работ выхода электронов из этих слоев, но сумма таких разностей потенциалов будет равна разности потенциалов между слоями 1 и 5.

Слой 2 ФЭП выполнен из политиофена с дырочной проводимостью, легированного отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в диапазоне длин волн света от 475 до 580 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Слой 3 ФЭП выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в видимом диапазоне длин волн света с максимумом 620 нм и в ближнем инфракрасном спектральном диапазоне с максимумом при длинах волн 1000-1100 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Слой 4 ФЭП выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен и перфторированный сульфокатионит и легированного неорганическими отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в видимом диапазоне длин волн света с максимумом 880 нм и в ближнем инфракрасном спектральном диапазоне с максимумом при длинах волн 1000-2000 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Фотоэлектрический преобразователь работает следующим образом.

При облучении ФЭП солнечным светом со стороны слоя 1 в слоях с дырочной проводимостью 1, 2, 3, 4 под действием света будут переходить из валентной зоны в зону проводимости электроны, которые являются несобственными (неравновесными) носителями заряда в полупроводниках с дырочной проводимостью. Вблизи границ слоев ФЭП, как показано на Фиг. 2, энергия Wc электронов в зоне проводимости полупроводников изменяется относительно уровня энергии Wf химического потенциала. Поэтому неравновесные электроны, образовавшиеся в зоне проводимости под действием света, мигрируют из слоев с меньшей энергией Wc электронов в зоне проводимости в слои с большей энергией Wc. Из-за этого в ФЭП возникает электрический ток, направленный от слоя 1 к слою 5, а перепад потенциалов между слоями 1 и 5 уменьшается.

При соединении слоев 1 и 5 через внешнюю электрическую цепь некоторая часть энергии, преобразованной из энергии солнечного излучения в энергию неравновесных электронов, будет выделяться во внешней электрической сети и может быть полезно использована.

В слое 1 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, меньшими 400 нм. В слое 2 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн 475-580 нм. В слое 3 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, лежащими вблизи максимумов поглощения света для этого слоя 630 нм и 1000-1100 нм. В слое 4 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, лежащими вблизи максимума поглощения света 880 нм и в диапазоне 1000-2000 нм. До слоя 5 коротковолновое излучение с длинами волн менее 400 нм практически не достигает, поэтому в нем не образуются дырки, являющиеся неосновными носителями заряда для этого слоя с электронной проводимостью. Из слоя 5 инжектируются в слой 4 электроны из-за перепада энергии Wc электронов в зонах проводимости слоев 4 и 5.

Таким образом, из-за генерации электронов в слоях ФЭП под действием фотонов с длинами волн, лежащими во всем спектре видимого и ближнего инфракрасного солнечного излучения, достигается технический результат от использования изобретения, заключающийся в повышении коэффициента преобразования энергии светового излучения в электрическую энергию.

Осуществление изобретения

Фотоэлектрический преобразователь изготовлен следующим образом.

Из водного раствора нитрата цинка на алюминиевой фольге электрохимически при положительном потенциале был осажден в кислой среде при температуре 70-80°С слой 5 оксида цинка с электронной проводимостью.

Затем из раствора 3,4-этилендиокситиофена и перфторированного сульфокатионита МФ-ЧСК в смеси воды и ацетонитрила, содержащей отрицательные ионы тетрабората фтора, электрохимически при положительном (анодном) потенциале на слой 5 был осажден слой 4, содержащий поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит МФ-ЧСК и легированный отрицательными ионами тетраборфтората.

На слой 4 электрохимически при положительном потенциале был осажден слой 3 поли-3,4,-этилендиокситиофена из раствора 3,4-этилендиокситиофена в ацетонитриле, содержащем ионы тетрабората фтора.

На слой 3 электрохимически при положительном потенциале был осажден слой 2 политиофена из раствора тиофена в ацетонитриле, содержащем ионы тетраборфтората.

На слой 2 электрохимически при положительном потенциале был осажден слой 1 оксида цинка с дырочной проводимостью из водного раствора, содержащего ацетаты цинка, марганца и аммония.

При электрохимическом осаждении слоев ФЭП толщину этих слоев регулировали величиной электрического заряда, пропущенного через электроды электрохимической системы. Толщину слоев ФЭП формировали в диапазоне 100-1000 нм.

После изготовления образцов ФЭП были измерены их вольт-амперные характеристики при освещении ФЭП имитатором солнечного излучения и по этим характеристикам были определены коэффициенты преобразования энергии светового солнечного излучения в электрическую энергию в образцах ФЭП, лежащие в диапазоне от 7 до 11%.

ФЭП согласно изобретению является промышленно применимым, так как он может быть изготовлен известными методами электрохимического синтеза с использованием промышленно изготавливаемых компонентов и химических реагентов.

Гибридный фотоэлектрический преобразователь, содержащий несколько слоев неорганических и органических полупроводников, отличающийся тем, что первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.
ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ
ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 56.
10.05.2018
№218.016.41c2

Способ получения ферромагнитного композита alsb-mnsb

Изобретение относится к области неорганической химии, конкретно к созданию новых композиционных материалов, состоящих из полупроводника антимонида алюминия и ферромагнетика антимонида марганца, которые могут найти применение для создания магниточувствительных диодных структур, магнитных...
Тип: Изобретение
Номер охранного документа: 0002649047
Дата охранного документа: 29.03.2018
16.06.2018
№218.016.6339

Способ получения гетероструктуры mg(fega)o/si со стабильной межфазной границей

Изобретение относится к способу получения гетероструктуры Mg(FeGa)O/Si со стабильной межфазной границей пленка/подложка, где х=0,05÷0,25. Осуществляют нанесение на полупроводниковую подложку монокристаллического кремния пленки галлий-замещенного феррита магния Mg(FeGa)O, где х=0,05÷0,25....
Тип: Изобретение
Номер охранного документа: 0002657674
Дата охранного документа: 14.06.2018
01.07.2018
№218.016.6979

Способ получения поликристаллического ортогерманата висмута

Изобретение относится к материалам для сцинтилляционной техники, к эффективным быстродействующим сцинтилляционным детекторам гамма- и альфа-излучений в приборах для экспресс-диагностики в медицине, промышленности, космической технике и ядерной физике. Предложен способ получения...
Тип: Изобретение
Номер охранного документа: 0002659268
Дата охранного документа: 29.06.2018
10.01.2019
№219.016.ade8

Способ иммобилизации тория(iv) из водных растворов сорбентом на основе гидроортофосфата церия(iv)

Изобретение относится к способам сорбции Th(IV) из водных растворов. Иммобилизацию тория(IV) осуществляют на сорбенте на основе гидроортофосфата церия(IV). Церийсодержащий фосфорнокислый раствор с концентрацией церия(IV) 0,01÷0,8 М смешивают с водным раствором, содержащим ионы тория,...
Тип: Изобретение
Номер охранного документа: 0002676624
Дата охранного документа: 09.01.2019
18.01.2019
№219.016.b17a

Индикаторная трубка для определения 1,1-диметилгидразина в воздухе

Изобретение относится к аналитической химии, а именно к химическим индикаторам на твердофазных кремнеземных носителях, и может быть использовано для экспрессного определения предельно допустимых и опасных концентраций 1,1-диметилгидразина в воздухе. Индикаторная трубка состоит из прозрачной...
Тип: Изобретение
Номер охранного документа: 0002677329
Дата охранного документа: 16.01.2019
22.02.2019
№219.016.c5bd

Индикаторная полоса риб-диазо-тест для индикаторного средства по определению подлинности лекарственного вещества

Настоящее изобретение относится к аналитической химии, конкретно к индикаторной полосе РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества. Данная индикаторная полоса состоит из целлюлозы с закрепленным на ней индикатором, в качестве которого используют...
Тип: Изобретение
Номер охранного документа: 0002680391
Дата охранного документа: 20.02.2019
02.03.2019
№219.016.d206

Мембрана ионоселективного электрода для определения ионов кальция

Изобретение относится к области ионометрии, а именно к разрабоке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем, и может быть использовано для прямого потенциометрического определения активности ионов кальция в водных растворах: природных, сточных вод, а...
Тип: Изобретение
Номер охранного документа: 0002680865
Дата охранного документа: 28.02.2019
30.03.2019
№219.016.fa1a

Мембрана ионоселективного электрода для определения уранил-иона

Изобретение относится к области аналитической химии и может быть использовано для неразрушающего контроля и автоматического регулирования содержания уранил-ионов в водных растворах. Предложена мембрана ионоселективного электрода для определения уранил-иона, содержащая поливинилхлорид в качестве...
Тип: Изобретение
Номер охранного документа: 0002683423
Дата охранного документа: 28.03.2019
24.05.2019
№219.017.5d8a

Мембрана ионоселективного электрода для определения ионов кадмия

Изобретение относится к области ионометрии, а именно к разработке ионоселективных электродов с мембранами на основе полимерных супрамолекулярных систем. Предлагаемое изобретение предназначено для прямого потенциометрического определения активности катионов кадмия в водных растворах и может быть...
Тип: Изобретение
Номер охранного документа: 0002688951
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5e3d

Способ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов,...
Тип: Изобретение
Номер охранного документа: 0002688755
Дата охранного документа: 22.05.2019
Показаны записи 41-48 из 48.
20.03.2019
№219.016.e782

Сорбционный материал с каталитической активностью для удаления озона из жидких и газовых сред и способ его получения

Изобретение относится к области экологии. Сорбционный материал с каталитической активностью содержит термообработанную смесь, состоящую из лепидокрокита в количестве 40-70 масс.% и глины или ее смеси с высокоглиноземистым цементом. Материал получен из сырья, содержащего лепидокрокит,...
Тип: Изобретение
Номер охранного документа: 0002411991
Дата охранного документа: 20.02.2011
20.03.2019
№219.016.e784

Материал с каталитической активностью для разложения озона и способ его получения

Изобретение относится к области неорганической химии и газоочистки и может быть использовано в процессах каталитической очистки газов от озона. Предложен материал, содержащий, мас.%: и способ получения материала, который включает смешивание исходных компонентов в виде основного карбоната...
Тип: Изобретение
Номер охранного документа: 0002411992
Дата охранного документа: 20.02.2011
20.03.2019
№219.016.e785

Способ получения материала для разложения озона и материал

Изобретение относится в области неорганической химии. Предложен способ получения материала для разложения озона, включающий перемешивание марганец- и медьсодержащих соединений с высокоглиноземистым цементом и бентонитовой глиной, формование гранул, выдержку на воздухе, гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002411984
Дата охранного документа: 20.02.2011
10.04.2019
№219.017.0946

Вибрационный магнитометр

Изобретение относится к области измерительных приборов для научных исследований. Предлагаемый прибор представляет собой вибрационный магнитометр, предназначенный для измерения намагниченности исследуемых веществ непосредственно в процессе их химических превращений. Сущность: магнитометр...
Тип: Изобретение
Номер охранного документа: 0002444743
Дата охранного документа: 10.03.2012
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cbb2

Способ одновременной диагностики и терапии онкологических заболеваний в эксперименте

Изобретение относится к экспериментальной медицине и может быть использовано при одновременной диагностике и терапии онкологических заболеваний. Для этого в организм животного осуществляют трансплантацию клеток опухоли, после чего интратуморально или внутривенно вводят суспензию кремниевых...
Тип: Изобретение
Номер охранного документа: 0002701106
Дата охранного документа: 24.09.2019
16.05.2023
№223.018.6135

Способ деметаллизации углеводородных продуктов

Настоящее изобретение относится к способу деметаллизации нефти или мазута, включающему проведение процесса очистки путем обеспечения совместного перемещения в реакторе смеси исходного углеводородного сырья и реагентов, фильтрацию смеси по окончании процесса ее обработки в реакторе, при этом в...
Тип: Изобретение
Номер охранного документа: 0002747176
Дата охранного документа: 28.04.2021
06.06.2023
№223.018.78d5

Способ очистки углеводородсодержащего газа от серосодержащих соединений и установка для его осуществления

Изобретение касается способа очистки углеводородсодержащего газа от серосодержащих соединений, в котором, осуществляют в электрохимическом реакторе электролиз раствора электролита, содержащего воду, серную кислоту HSO и ионы металла, изменяют степень окисления ионов, смешивают...
Тип: Изобретение
Номер охранного документа: 0002757332
Дата охранного документа: 13.10.2021
+ добавить свой РИД