×
27.05.2016
216.015.4370

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СПЛАВОВ СИСТЕМЫ Sn-Sb-Cu И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002585588
Дата охранного документа
27.05.2016
Аннотация: Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении. Композиционный материал на основе сплава Sn-Sb-Cu содержит армирующие дискретные частицы. В качестве армирующих дискретных частиц он содержит углеродсодержащие компоненты размером <100 нм в количестве 0,1-2 мас. % в виде смеси углеродных нанотрубок, аморфного углерода, наночастиц графита и покрытых углеродом металлических частиц и высокопрочные керамические частицы порошка SiC размером 14-63 мкм в количестве 5-10 мас. %. Способ получения композиционного материала на основе сплава Sn-Sb-Cu включает получение смеси армирующих дискретных частиц и порошка матричного сплава Sn-Sb-Cu. Осуществляют смешивание армирующих дискретных частиц в виде углеродных нанотрубок, аморфного углерода, наночастиц графита, покрытых углеродом металлических частиц и высокопрочных керамических частиц порошка SiC с порошком матричного сплава высокоэнергетическим перемешиванием в шаровой мельнице в течение 20-30 мин. Полученную смесь подвергают горячему двухстороннему прессованию при температуре 280-320°С и давлении 300-340 МПа и последующему спеканию. Повышается износостойкость материала в условиях ограниченной смазки и сухого трения скольжения. 2 н.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к композиционным материалам на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении.

Антифрикционные оловосодержащие сплавы системы Sn-Sb-Cu, в частности оловянные баббиты, широко применяют для изготовления подшипников скольжения деталей трибоузлов. Антифрикционные свойства таких сплавов определяются неоднородной структурой, состоящей из мягкой основы (α-твердый раствор сурьмы и меди в олове), обеспечивающей прирабатываемость, с равномерно распределенными в ней твердыми включениями интерметаллидов (SnSb, Cu3Sn), увеличивающих износостойкость. Благодаря такой структуре в процессе приработки сопряженных деталей на поверхности баббитового слоя формируются борозды трения, удерживающие смазочный материал.

Из уровня техники известно, что основной технологией изготовления подшипников скольжения деталей трибоузлов являются методы литья. Подшипники заливают на воздухе индивидуально стационарным или центробежным способом (Справочник металлиста / Под ред. А.Г. Рахштадта и др. М.: Машиностроение, 1976, т. 2, с. 407). К недостаткам данного способа относится образование дефектов в виде литейных раковин в объеме закристаллизовавшегося расплава. Для устранения дефектов необходимо после предварительной механической обработки антифрикционного слоя провести "залечивание" раковин электропаяльником (ГОСТ 7129-83).

Кроме того, литые антифрикционные оловосодержащие сплавы не обеспечивают достаточный уровень усталостной прочности, износостойкости и ресурса работы, о чем свидетельствуют результаты анализа аварийных и внеплановых выходов из строя трибоузлов механизмов и машин.

Общим недостатком способов, осуществляемых методами литья, является склонность расплава к ликвации, выделение токсичного вещества второго класса опасности сурьмы (сурьма вызывает раздражение слизистых дыхательных путей и пищеварительного тракта, кожных покровов, ГОСТ 12.1.007) при расплавлении и образование литейных раковин при кристаллизации.

Решением этой актуальной проблемы являются повышение служебных свойств антифрикционных сплавов созданием на их основе композиционных материалов (КМ) и разработка способов их получения.

Устранить вышеперечисленные недостатки можно применив методы порошковой металлургии. Так известен способ нанесения баббита на подшипник (Патент РФ №2160652 МПК B22D 19/08), включающий лужение углубления в основании подшипника и охлаждение его после нанесения, закладку баббита в подготовленное для него углубление основания подшипника в виде дозированного по весу и соответствующего форме углубления брикета, спрессованного из порошка, и приплавление при нагреве к основанию подшипника, при этом нагрев и охлаждение осуществляют в защитно-восстановительной среде. Структура сформированного баббитового слоя тонковолокнистая с равномерным распределением твердых и мягких составляющих, по свойствам не уступающая структуре, полученной при заливке на воздухе. Однако, исключив образование литейных раковин и сформировав тонковолокнистую с равномерным распределением твердых и мягких составляющих структуру баббитового слоя, по свойствам не уступающую структуре, полученной при заливке на воздухе, способ не содержит технических решений по повышению износостойкости антифрикционного сплава.

Известен способ повышения износостойкости антифрикционного сплава 6 мас. % Sn, 6 мас. % Zn, 3 мас. % Pb, Cu - остальное и получения на его основе КМ, дополнительно содержащего 9 мас. % дискретных углеродных волокон диаметром 7-10 мкм и длиной 1-2 мм (Z. Jun et al. Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers / Applied Surface Science. - 2009. - 255. - P. 6647-6651). KM получали методом порошковой металлургии: холодным прессованием при давлении 350 МПа и спеканием при температуре 800°С в защитной среде газа аргона. Полученный КМ показал большую износостойкость по отношению к матричному сплаву вследствие наличия в матрице высокопрочных, износостойких углеродных волокон. Однако данный способ имеет существенный недостаток: при спекании высокая температура плавления медной матрицы и низкая совместимость между углеродными волокнами и матрицей приводит к необходимости нанесения медного покрытия на углеродные волокна, что значительно усложняет способ получения КМ.

Наиболее близким аналогом для композиционного материала и способа его получения является композиционный материал и способ его получения, раскрытые в RU 2367696 С2, С22С 13/006 20.05.2009. Композиционный материал на основе сплавов системы Sn-Sb-Cu содержит армирующие частицы SiC. Способ получения композиционного материала включает получение смеси армирующих дискретных частиц SiC и матричного сплава. Композиционный материал изготавливали следующим способом - баббит Б83 расплавляли в печи сопротивления под слоем древесного угля. После достижения температуры 350-400°С снимали покровный слой древесного угля и затем вводили порошок карбида кремния. Ввод порошка карбида кремния в расплавленный баббит производился механическим замешиванием. Полученный композиционный сплав выливали в металлическую форму. Предлагаемый способ механического замешивания практически трудно осуществить по причине агломерации частиц и резкого повышения вязкости и потери жидкотекучести расплава, и к тому же он не обеспечивает равномерного распределения частиц в матрице и, следовательно, стабильного уровня свойств КМ.

Задача, на решение которой направлено настоящее изобретение, заключается в создании композиционного материала на основе сплавов системы Sn-Sb-Cu с повышенными служебными свойствами и способа его получения.

Техническим результатом изобретения является повышение уровня износостойкости КМ.

Технический результат достигается тем, что композиционный материал на основе сплава Sn-Sb-Cu, содержащий армирующие дискретные частицы, согласно изобретению в качестве армирующих дискретных частиц содержит углеродсодержащие компоненты размером <100 нм в количестве 0,1-2 мас. % в виде смеси углеродных нанотрубок, аморфного углерода, наночастиц графита и покрытых углеродом металлических частиц и высокопрочные керамические частицы порошка SiC размером 14-63 мкм в количестве 5-10 мас. %.

Способ получения композиционного материала на основе сплава Sn-Sb-Cu, включающий получение смеси армирующих дискретных частиц и порошка матричного сплава Sn-Sb-Cu, согласно изобретению осуществляют смешивание армирующих дискретных частиц в виде углеродных нанотрубок, аморфного углерода, наночастиц графита, покрытых углеродом металлических частиц и высокопрочных керамических частиц порошка SiC с порошком матричного сплава высокоэнергетическим перемешиванием в шаровой мельнице в течение 20-30 мин, а полученную смесь подвергают горячему двухстороннему прессованию при температуре 280-320°С и давлении 300-340 МПа и последующему спеканию.

Сущность предлагаемого изобретения состоит в том, что высокая износостойкость КМ достигнута за счет упрочнения матрицы путем введения микронных высокопрочных наполнителей (SiC), выполняющих роль опор на поверхности трения и осуществления режимов самосмазывания в процессах трения скольжения при содержании в матрице углеродных наноструктур (углеродных нанотрубок, аморфного углерода, наночастиц графита и металлических частиц, покрытых углеродом), обладающих разной степенью графитизации и обеспечивающих эффекты самосмазывания в условиях ограниченной смазки и сухого трения скольжения.

Наноразмерные углеродсодержащие компоненты образуются при производстве углеродных нанотрубок (УНТ) и содержат только 20-40% УНТ, а остальное - наночастицы аморфного углерода, многослойные частицы графита и частицы металлического катализатора, заключенные в многослойную графитовую оболочку, имеющие размер менее 100 нм. Выделять углеродные нанотрубки в чистом виде технически сложно, что и объясняет их высокую стоимость, однако наличие УНТ, обладающих уникальными прочностными и механическими характеристиками в составе смеси, малая концентрация углеродсодержащих компонентов в КМ, доступность и дешевизна частиц карбида кремния определяют экономическую целесообразность способа получения конечного материала.

Предлагаемый способ получения КМ состоит в высокоэнергетическом перемешивании в шаровой мельнице порошка сплава баббита, высокопрочных керамических и наноразмерных углеродсодержащих частиц в течение 20-30 мин. За это время происходит перемешивание и внедрение в него упрочняющих частиц керамической и наноразмерной фаз. Если уменьшить длительность перемешивания, то не обеспечивается равномерности перемешивания смеси порошков, внедрения и закрепления наноразмерных углеродсодержащих компонентов в матричном порошке. Увеличение длительности перемешивания не оправдано из-за энергетических затрат. Полученную смесь помещают в пресс-форму и подвергают спеканию при горячем двухстороннем, позволяющим исключить различие в плотности материала по высоте, прессовании при температуре начала плавления баббитового сплава 280-320°С и давлении 300-340 МПа, обеспечивающем получение плотности материала, близкой к расчетному значению плотности при данном соотношении компонентов. Нагрев смеси в интервале температур 280-320°С позволяет в присутствии жидкой фазы расплава получить КМ, не содержащий пустот и пор. Уменьшение температуры ниже 280°С не позволяет проводить прессование в присутствии жидкой фазы из-за отсутствия расплавленного металла. Повышение температуры выше 320°С приводит к вытеканию расплава при приложении давления через зазор между пуансоном и пресс-формой. Также повышение температуры приводит к ликвации расплава и выделению токсичного вещества второго класса опасности сурьмы. Содержание частиц карбида кремния менее 5 массового процента и углеродсодержащих наноразмерных частиц менее 0,1 массового процента не приводит к увеличению износостойкости КМ. Увеличение содержания частиц карбида кремния более 10 массовых процентов и углеродсодержащих наноразмерных частиц более 2 массовых процентов не приводит к дальнейшему росту износостойкости. Причиной этому является рост пористости, неоднородности распределения армирующих наполнителей из-за их склонности к агломерации при повышенном содержании.

Осуществление изобретения может быть проиллюстрировано следующим образом.

В размольный стакан планетарной шаровой мельницы РМ100 засыпали матричный порошок баббита Б83 (94,5 мас. %), армирующие дискретные частицы в количестве 0,5 мас. % в виде смеси углеродных нанотрубок, аморфного углерода, наночастиц графита и покрытых углеродом металлических частиц и керамические частицы порошка SiC в количестве 5 мас. %. Высокоэнергетическим перемешиванием в течение 25 минут осуществляли перемешивание смеси углеродных нанотрубок, аморфного углерода, наночастиц графита и покрытых углеродом металлических частиц и смешивание высокопрочных керамических частиц порошка SiC с порошком матричного сплава. Полученную смесь помещали в пресс-форму и подвергали спеканию при горячем двухстороннем прессовании при температуре 300°С и давлении 320 МПа. По вышеизложенной технологии на основе порошка сплава баббита ПР-Б83 были изготовлены образцы КМ, состав и триботехнические свойства которых приведены и сравнены со свойствами литого сплава Б83 в таблице 1.

Трибологические испытания образцов КМ и баббита Б83 проводили в условиях сухого трения скольжения на установке CETR UMT Multi-Specimen Test System по схеме осевого нагружения: втулка (КМ, неподвижна) против диска (контртело, вращается) из стали (HRC≥63). Внешний диаметр втулки -16,2 мм, внутренний - 11,5 мм. Средний радиус испытания - 6,925 мм, скорость скольжения - 0,37 м/с. Испытания каждого образца проводили в непрерывном режиме при нагрузках 200, 225, 250, 275, 300, 325, 350 Н. Время испытаний при каждой нагрузке составляло 10 мин. При нагрузке 200 Н проходил этап приработки материалов. Полный путь трения составил 1554 м. Потерю массы образцов фиксировали после полного цикла испытания взвешиванием с точностью ±0,5×10-3 г. Об износостойкости материала судили по величине интенсивности изнашивания.

Интенсивность изнашивания определяли по формуле: , где γ - плотность исследуемого материала, L - путь трения.

На рисунке 1 представлены диаграммы значений коэффициента трения в зависимости от нагрузки образцов литого сплава Б83(а) и образцов КМ двух составов: содержащих только наноразмерные углеродсодержащие частицы -ПР-Б83+0,5 мас. % наноразмерных углеродсодержащих частиц (б) и упрочненных наноразмерными углеродсодержащими частицами и микронными порошками карбида кремния - ПР-Б83+0,5 мас. % наноразмерных углеродсодержащих частиц +5 мас. % SiC (в).

Видно, что КМ, содержащий только наноразмерные углеродсодержащие частицы, характеризуется более низким коэффициентом трения по сравнению с литым сплавом Б83 (0,309 и 0,416 соответственно). Результаты испытаний подтверждают целесообразность введения в матрицу наноразмерных углеродсодержащих частиц, обладающих разной степенью графитизации и обеспечивающих эффекты самосмазывания в условиях ограниченной смазки и сухого трения скольжения. Однако потеря массы образца при испытаниях и значение интенсивности изнашивания значительно увеличиваются (0,156 г и 0,099 г, и 8,63×10-3 мм3/м и 13,75×10-3 мм3/м соответственно). Повышение износостойкости КМ достигнуто дополнительным армированием высокопрочными частицами карбида кремния микронного размера (образец №3, см. таблицу). Коэффициент трения у данного КМ ниже, а износостойкость увеличена более чем в два раза по отношению к литому сплаву Б83.

Таким образом, комбинация в оловянной матрице сплава Б83 равномерно распределенных упрочняющих высокопрочных керамических частиц карбида кремния и наноразмерных углеродсодержащих компонент, позволяющих сформировать на рабочих поверхностях трибосопряжений слои, обеспечивающие режим безызносного трения, позволяет повысить ресурс работы КМ в условиях сухого трения скольжения, увеличив его износостойкость.


КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ СПЛАВОВ СИСТЕМЫ Sn-Sb-Cu И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 115.
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
10.05.2018
№218.016.3971

Способ получения нанопорошка оксинитрида алюминия

Изобретение относится к получению нанопорошка оксинитрида алюминия. Тонкодисперсный порошок алюминия вводят в поток термической плазмы, в котором осуществляют взаимодействие паров алюминия с аммиаком в присутствии кислорода в количестве, отвечающем атомному соотношению элементов 1,16
Тип: Изобретение
Номер охранного документа: 0002647075
Дата охранного документа: 13.03.2018
09.06.2018
№218.016.5cf4

Рабочее вещество для термолюминесцентной дозиметрии рентгеновского и гамма-излучения

Изобретение относится к области радиоэкологического мониторинга и дозиметрии рентгеновского и гамма-излучения и может быть использовано в персональных и аварийных дозиметрах для определения дозозатрат персонала рентгеновских кабинетов, мобильных комплексов радиационного контроля, зон с...
Тип: Изобретение
Номер охранного документа: 0002656022
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5f85

Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент»,...
Тип: Изобретение
Номер охранного документа: 0002656626
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.62ea

Способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов. Способ характеризуется тем, что цементный раствор получают в результате последовательного добавления в...
Тип: Изобретение
Номер охранного документа: 0002657568
Дата охранного документа: 14.06.2018
12.07.2018
№218.016.700b

Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах,...
Тип: Изобретение
Номер охранного документа: 0002660806
Дата охранного документа: 10.07.2018
05.09.2018
№218.016.8316

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Технический результат изобретения - увеличение прочности материалов, спекающихся до плотного состояния при низкой температуре 1300-1350°С. Керамический материал содержит добавку ниобат...
Тип: Изобретение
Номер охранного документа: 0002665734
Дата охранного документа: 04.09.2018
19.10.2018
№218.016.939e

Состав рудной части шихты для выплавки чугуна в доменной печи

Изобретение относится к черной металлургии, а именно к шихте для выплавки чугуна в доменной печи. Состав рудной части шихты для выплавки чугуна в доменной печи включает железосодержащее сырье, марганецсодержащее сырье и известняк, при этом он дополнительно включает отвальный шлак...
Тип: Изобретение
Номер охранного документа: 0002669962
Дата охранного документа: 17.10.2018
20.12.2018
№218.016.a92e

Керамический материал с низкой температурой спекания на основе диоксида циркония тетрагональной модификации

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония и может быть использовано в качестве износостойких изделий, режущего инструмента, керамических подшипников, а также имплантатов для замещения костных дефектов. Керамический материал...
Тип: Изобретение
Номер охранного документа: 0002675391
Дата охранного документа: 19.12.2018
24.01.2019
№219.016.b31d

Способ комбинированного упрочнения поверхностей деталей

Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для защиты и упрочнения поверхностей деталей с целью снижения шероховатости, повышения плотности. Способ упрочнения поверхности стальной детали включает нанесение...
Тип: Изобретение
Номер охранного документа: 0002677906
Дата охранного документа: 22.01.2019
Показаны записи 61-70 из 73.
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
09.06.2018
№218.016.5f85

Способ получения проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы

Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент»,...
Тип: Изобретение
Номер охранного документа: 0002656626
Дата охранного документа: 06.06.2018
08.03.2019
№219.016.d2f4

Способ получения композиционного материала sic-tin

Изобретение относится к технической керамике в виде композиционного материала SiC-TiN. Способ включает горячее прессование порошковой смеси. В качестве порошковой смеси используют смесь, содержащую 53-83 мас.% порошка карбида кремния, 5-40 мас.% порошка титана и 7 мас.% порошка спекающей...
Тип: Изобретение
Номер охранного документа: 0002681332
Дата охранного документа: 06.03.2019
02.05.2019
№219.017.4864

Способ получения биодеградируемого полимерного покрытия на основе полилактида на проволоке tinbtazr

Изобретение относится к способу получения биодеградируемого полимерного покрытия на основе полилактида на проволоке TiNbTaZr для кава-фильтров, применяемых в эндоваскулярной профилактике тромбоэмболии легочной артерии. Способ включает растворение полилактида в хлороформе, добавление...
Тип: Изобретение
Номер охранного документа: 0002686747
Дата охранного документа: 30.04.2019
09.06.2019
№219.017.7fa3

Композиционный материал для электротехнических изделий

Изобретение относится к области металлургии и может быть использовано для получения пропиткой композиционных материалов с армирующим углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические...
Тип: Изобретение
Номер охранного документа: 0002466204
Дата охранного документа: 10.11.2012
11.07.2019
№219.017.b28b

Способ изготовления тонкой проволоки из биосовместимого сплава tinbtazr

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных...
Тип: Изобретение
Номер охранного документа: 0002694099
Дата охранного документа: 09.07.2019
29.11.2019
№219.017.e7f2

Способ формирования упрочненного поверхностного слоя в зоне лазерной резки деталей из легированных конструкционных сталей

Изобретение относится к способу формирования упрочненного приповерхностного слоя в процессе лазерной резки деталей из листовых легированных сталей. Осуществляют газодинамическое воздействие на зону реза потоком лазерного излучения в инфракрасной области спектра. Перед началом резки формируют...
Тип: Изобретение
Номер охранного документа: 0002707374
Дата охранного документа: 26.11.2019
18.06.2020
№220.018.2779

Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора...
Тип: Изобретение
Номер охранного документа: 0002723588
Дата охранного документа: 16.06.2020
04.07.2020
№220.018.2e84

Способ получения углеграфитового композиционного материала

Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ получения углеграфитового композиционного материала включает вакуумную...
Тип: Изобретение
Номер охранного документа: 0002725522
Дата охранного документа: 02.07.2020
21.07.2020
№220.018.3528

Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по...
Тип: Изобретение
Номер охранного документа: 0002727031
Дата охранного документа: 17.07.2020
+ добавить свой РИД