×
27.05.2016
216.015.4325

АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть

Авторы

Правообладатели

№ охранного документа
0002585137
Дата охранного документа
27.05.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к медицинской технике. Система вентиляции легких включает в себя интегрированную воздуходувку. В одном случае система вентиляции включает в себя: отверстие вдоха для соединения с патрубком вдоха двухсегментного контура пациента и отверстие выдоха для соединения с патрубком выдоха двухсегментного контура пациента; устройство подачи газа, соединенное с отверстием вдоха для подачи потока сжатого газа к отверстию вдоха для создания положительного давления; и воздуходувку, имеющую вход, функционально связанный с отверстием выдоха и выполненный с возможностью управления для выборочной подачи отрицательного давления на уровне от 4 до 120 см вод. ст. к отверстию выдоха, и выход для выпуска газа, принятого из отверстия выдоха. В другом случае система ИВЛ включает в себя воздуходувку для создания положительного давления/потока для дополнения потока при неинвазивной вентиляции. 2 н. и 8 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

ОПИСАНИЕ ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к аппаратам искусственной вентиляции легких (ИВЛ) и, в частности, к аппарату ИВЛ, включающему в себя интегрированную воздуходувку для создания отрицательного или положительного давления в системе аппарата ИВЛ.

УРОВЕНЬ ТЕХНИКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Аппараты ИВЛ используются во множестве установок. Например, в больницах вентиляция легких пациента может быть частью медицинской помощи. В частности, аппараты ИВЛ обычно применяются в больницах в отделениях интенсивной терапии (intensive care unit, ICU).

Во многих таких аппаратах ИВЛ для обеспечения дыхания используется источник сжатого газа или высокого давления. Дополнительно к созданию и доставке дыхания пациенту высокотехнологичный аппарат ИВЛ может включать в себя реализацию интегрированной системы. При такой реализации система аппарата ИВЛ может включать в себя другие методы обслуживания больного, такие как восстановление секреции, высокочастотная вентиляция и т.д. Для эффективной реализации таких методов воздействия требуется и положительное, и отрицательное давление в системе. Так, при высокочастотной вентиляции легких под положительным давлением (high frequency positive pressure ventilation, HFPPV) положительное давление создается источником сжатого газа высокого давления, а отрицательное давление создается введением системы Вентури.

Например, при осуществлении HFPPV среднее давление в дыхательных путях (mean airway pressure, MAP) зависит от удвоенной амплитуды импульсов положительного давления. При более высоких частотах или больших амплитудах среднее давление в дыхательных путях может быть слишком высоким для пациента. Снизить среднее давление в дыхательных путях можно только приложением отрицательного давления во время выдоха. Такое отрицательное давление может создаваться посредством эффекта Вентури со стороны положительного давления системы. Однако система Вентури очень шумная и сравнительно инерционная. В другом методе, таком как восстановление секреции, система вентиляции должна проводить инсуффляцию (положительное давление) и экссуффляцию (отрицательное давление) для симуляции кашля. В еще одном методе, таком как неинвазивная вентиляция, включенном в высокотехнологичные аппараты ИВЛ в отделениях интенсивной терапии, воздуходувка может дополнительно увеличивать и/или обеспечивать более интенсивные потоки газа, которые могут потребоваться для такого лечения с помощью ИВЛ. Подача газа из отдельных газовыпускных отверстий в больницах может быть ограничена до ~180 литров в минуту (л/мин) и является адекватной большинству потребностей инвазивной искусственной вентиляции легких. Однако при неинвазивной вентиляции аппарат ИВЛ должен быть способен создавать гораздо большие потоки, порядка 250-300 л/мин, чтобы компенсировать негерметичность маски.

Соответственно, желательно разработать аппарат ИВЛ и способ вентиляции, которые могут удовлетворить одно или более из этих требований.

В одном аспекте настоящего изобретения система аппарата ИВЛ содержит: отверстие вдоха, выполненное с возможностью соединения с патрубком входа двухсегментного контура пациента, и отверстие выдоха, выполненное с возможностью соединения с патрубком выдоха двухсегментного контура пациента; устройство подачи газа, функционально связанное с отверстием вдоха и предназначенное для подачи потока сжатого газа к отверстию вдоха для создания положительного давления; и воздуходувку, имеющую вход, функционально связанный с отверстием выдоха и способный контролируемо выборочно подавать отрицательное давление на уровне от 4 до 120 см вод.ст. к патрубку выдоха, и дополнительно содержащую выход, способный выпускать газ, полученный через отверстие выдоха.

В другом аспекте настоящего изобретения согласно способу вентиляции: обеспечивают отверстие вдоха, выполненное с возможностью соединения с патрубком вдоха двухсегментного контура пациента, и отверстие выдоха, выполненное с возможностью соединения с патрубком выдоха двухсегментного контура пациента; подают поток сжатого газа к отверстию вдоха для создания положительного давления; и выборочно соединяют вход воздуходувки с отверстием выдоха для выборочной подачи отрицательного давления на уровне от 4 до 120 см вод.ст. к отверстию выдоха и отведения из вывода воздуходувки газа, полученного отверстием выдоха.

В еще одном аспекте настоящего изобретения система аппарата ИВЛ содержит: интерфейсный порт контура пациента, который может соединяться с односегментным контуром пациента; устройство подачи газа, функционально связанное с интерфейсным портом контура пациента и способное подавать поток сжатого газа к интерфейсному порту контура пациента для создания положительного давления; воздуходувку, имеющую выход, функционально связанный с интерфейсным портом контура пациента и способную подавать сжатый воздух к интерфейсному порту контура пациента для создания положительного давления; датчик давления, способный измерять давление в дыхательных путях пациента; по меньшей мере, один датчик потока, способный измерять поток газа в контуре пациента; и контроллер, способный управлять устройством подачи газа и воздуходувкой в ответ на сигнал датчика давления, указывающий измеренное давление в контуре пациента, и на сигнал датчика потока, указывающий измеренный поток газа от устройства подачи газа.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 представляет собой функциональную блок-схему системы аппарата ИВЛ, которая включает в себя воздуходувку для создания отрицательного давления в системе.

Фиг. 2А представляет собой подробную иллюстрацию первого типового варианта осуществления системы аппарата ИВЛ, включающей в себя воздуходувку, во время первой фазы дыхательного цикла.

Фиг. 2B представляет собой подробную иллюстрацию первого типового варианта осуществления с фиг. 2А во время второй фазы дыхательного цикла.

Фиг. 2С представляет собой подробную иллюстрацию контроллера с фиг. 2А.

Фиг. 3А представляет собой подробную иллюстрацию второго типового варианта осуществления системы аппарата ИВЛ, включающей в себя воздуходувку, во время первой фазы дыхательного цикла.

Фиг. 3B представляет собой подробную иллюстрацию второго типового варианта осуществления с фиг. 3А во время второй фазы дыхательного цикла.

Фиг. 3С представляет собой подробную иллюстрацию контроллера с Фиг. 3А.

Фиг. 4 представляет собой подробную иллюстрацию третьего типового варианта осуществления системы аппарата ИВЛ для неинвазивной вентиляции, включающей в себя воздуходувку.

ПОДРОБНОЕ ОПИСАНИЕ

Далее настоящее изобретение будет описано более подробно со ссылкой на прилагаемые чертежи, на которых показаны предпочтительные варианты осуществления изобретения. Однако данное изобретение может быть осуществлено в различных формах и не должно рассматриваться как ограничиваемое приведенными здесь вариантами осуществлениями. Напротив, данные варианты осуществления приведены в качестве примеров идеи изобретения.

Фиг. 1 представляет собой функциональную блок-схему системы 100 аппарата ИВЛ. Система 100 аппарата ИВЛ включает в себя двухсегментный контур 110 пациента, устройство 120 подачи газа, воздуходувку 130, клапан 14 0 выдоха и контроллер 150.

Двухсегментный контур 110 пациента включает в себя патрубок 112 вдоха, патрубок 114 выдоха, У-образный тройник 117 и дыхательную трубку 116, соединенную с патрубком 112 вдоха и с патрубком 114 выдоха посредством У-образного тройника 117. В некоторых вариантах осуществления дыхательная трубка 116 может быть эндотрахеальной трубкой.

Устройство 120 подачи газа представляет собой устройство, способное подавать поток сжатого газа к патрубку 112 вдоха двухсегментного контура 110 пациента через отверстие 142 вдоха для создания положительного давления. При этом газ может представлять собой смесь составляющих газов, например воздуха, кислорода, гелиево-кислородной смеси и т.д. В некоторых вариантах осуществления устройство 120 подачи газа способно принимать сжатый газ из внешнего источника (например, из резервуара или выпускного отверстия в стене) и контролировать и/или регулировать поток газа к контуру 110 пациента. Устройство 120 подачи газа может включать в себя один или более клапанов и регуляторов.

Воздуходувка 130 имеет вход 132, способный принимать газ из патрубка 114 выдоха двухсегментного контура 110 пациента через отверстие 142 выдоха, и дополнительно имеет выход 134 для выпуска газа, принятого из патрубка 114 выдоха. Здесь "воздуходувка" определяется как любое электромеханическое устройство, которое создает поток сжатого газа посредством вращательного движения поверхности (поверхностей), например вращающихся лопастей, и которое может создавать отрицательное давление на уровне от 4 до 120 см вод.ст. на своем входе 132. Например, воздуходувка может содержать вращающееся крыло высокоскоростного вентилятора. На входной стороне воздуходувки 130 предусмотрено отверстие 135 истечения из воздуходувки.

Клапан 140 выдоха служит для выборочного соединения входа 132 воздуходувки 130 с отверстием выдоха 142, например, во время фазы выдоха дыхательного цикла, что будет обсуждаться более подробно со ссылками на фиг.2A-2C. Клапан 140 выдоха снабжен диафрагмой 145.

В ответ на один или более входных сигналов и/или программируемых параметров контроллер 150 управляет воздуходувкой 130 и клапаном 140 выдоха для обеспечения искусственного дыхания пациента 10. Например, контроллер 130 может регулировать среднее давление в дыхательных путях при высокочастотной вентиляции легких под положительным давлением для поддержания требуемого среднего давления в дыхательных путях на уровне, заданном пользователем. В другом примере для обеспечения инсуффляции и экссуффляции при восстановлении секреции у пациента контроллер 150 может регулировать давление в дыхательных путях пациента во время экссуффляции.

Снабжение аппарата ИВЛ 100 воздуходувкой 130 обеспечивает некоторые возможные признаки и преимущества в различных режимах работы. Некоторые типовые варианты осуществления будут объяснены со ссылкой на подробные иллюстрации, показанные на фиг.2A-2C и 3A-3C и фиг.4.

Фиг. 2A-2C иллюстрируют первый типовой вариант осуществления аппарата ИВЛ, в котором интегрированная воздуходувка может использоваться для создания отрицательного давления для регулирования среднего давления в дыхательных путях при HFPPV. В этом случае в некоторых вариантах осуществления воздуходувка непрерывно создает отрицательное давление на уровне от низкого до среднего для патрубка выдоха двухсегментного контура пациента.

Фиг. 2А представляет собой подробную иллюстрацию первого типового варианта осуществления системы 200 аппарата ИВЛ во время первой фазы (вдоха) дыхательного цикла. Система 200 аппарата ИВЛ содержит аппарат 205 ИВЛ с интегрированной воздуходувкой 230 и двухсегментный контур 210 пациента.

Аппарат 205 ИВЛ включает в себя устройство 220 подачи газа, воздуходувку 230, клапан 240 выдоха и контроллер 250.

Двухсегментный контур 210 пациента включает в себя патрубок 212 вдоха, патрубок 214 выдоха, У-образный тройник 217 и дыхательную трубку, соединенную с патрубком 212 вдоха и патрубком 214 выдоха посредством У-образного тройника 217. В некоторых вариантах осуществления дыхательная трубка может быть эндотрахеальной трубкой. Датчик 215 давления соединен с У-образным тройником 217 для измерения давления в дыхательных путях пациента, подаваемого пациенту 10. Датчик 215 давления генерирует сигнал измеренного давления в дыхательных путях пациента, который передается на контроллер 250.

Устройство 220 подачи газа представляет собой устройство, способное подавать поток сжатого газа к патрубку 212 вдоха двухсегментного контура 210 пациента через отверстие 222 вдоха для создания положительного давления. Здесь газ может представлять собой смесь составляющих газов, например воздуха, кислорода, гелиево-кислородной смеси и т.д. В некоторых вариантах осуществления устройство 220 подачи газа способно принимать сжатый газ из внешнего источника (например, из резервуара или выпускного отверстия в стене) и управлять и/или регулировать поток газа в контуре пациента 210. Устройство 220 подачи газа может включать в себя один или более клапанов управления потоком и/или регуляторов.

Воздуходувка 230 имеет вход 232, способный принимать газ из патрубка 214 выдоха двухсегментного контура 210 пациента через отверстие 242 выдоха и дополнительно имеет выход 234 для выпуска газа, принятого из патрубка 214 выдоха. На входной стороне воздуходувки 230 предусмотрено отверстие 235 истечения из воздуходувки.

Как показано на фиг. 2А, в первую фазу (вдох) дыхательного цикла контроллер 250 управляет клапаном 240 выдоха для перекрытия прохода из патрубка 214 выдоха через отверстие выдоха 242 к входу 232 воздуходувки 230. В некоторых вариантах осуществления контроллер 250 может выключать, снижать скорость или уменьшать подачу тока на воздуходувку 230 во время первой фазы (вдоха) дыхательного цикла.

Фиг. 2B представляет подробную иллюстрацию первого типового варианта осуществления системы 200 аппарата ИВЛ во время второй фазы (выдоха) дыхательного цикла. Как видно из фиг. 2B, во время второй фазы (выдоха) дыхательного цикла контроллер 250 управляет клапаном 240 выдоха для открытия прохода из отверстия 242 выдоха к входу 232 воздуходувки 230 и управляет работой воздуходувки 230 на прием газа из отверстия 214 выдоха через отверстие выдоха 242 у входа 232 воздуходувки и на выпуск газа из выхода 234 воздуходувки. В некоторых вариантах осуществления контроллер 250 подает сигнал воздуходувке 230 для изменения или управления скоростью работы воздуходувки 230 и таким образом регулирует или контролирует отрицательное давление, подаваемое воздуходувкой 230.

Фиг. 2С представляет собой подробную иллюстрацию контроллера 250 с фиг. 2А. Контроллер 250 принимает измеренное давление в дыхательных путях пациента, например, от датчика 215 давления и создает выходные сигналы для управления воздуходувкой 230 и клапаном 240 выдоха. В некоторых вариантах осуществления контроллер 250 вычисляет или определяет среднее давление в дыхательных путях из сигнала измеренного давления в дыхательных путях пациента, принятого, например, от датчика 215. В некоторых вариантах осуществления контроллер 250 создает выходные сигналы для управления воздуходувкой 230 и клапаном 240 выдоха для поддержания вычисленного среднего давления в дыхательных путях на уровне целевого среднего давления в дыхательных путях или близко к нему.

Фиг. 3А-3С иллюстрируют второй типовой вариант осуществления системы аппарата ИВЛ, в которой интегрированная воздуходувка может использоваться для создания отрицательного давления при экссуффляции для восстановления секреции при инвазивной вентиляции. В некоторых вариантах осуществления при работе аппарата ИВЛ в режиме восстановления секреции воздуходувка создает высокие уровни отрицательного давления на очень короткий срок при переходе от вдоха к выдоху.

Фиг. 3А показывает в деталях второй типовой вариант осуществления системы ИВЛ 300 во время первой фазы (вдоха) дыхательного цикла. Система ИВЛ 300 содержит аппарат ИВЛ 305 с интегрированной воздуходувкой 330 и двухсегментный контур 310 пациента.

Аппарат ИВЛ 305 включает в себя устройство 320 подачи газа, воздуходувку 330, клапан 340 выдоха, контроллер 350, двухходовой клапан 360 и выпускное отверстие 370 аппарата ИВЛ. В некоторых вариантах осуществления двухходовой клапан 360 может быть интегрирован с клапаном 340 выдоха.

Двухсегментный контур 310 пациента включает в себя патрубок 312 вдоха, патрубок 314 выдоха, У-образный тройник 317 и дыхательную трубку, соединенную с патрубком 312 вдоха и патрубком 314 выдоха посредством У-образного тройника 317. В некоторых вариантах осуществления дыхательная трубка может быть эндотрахеальной трубкой. Датчик 315 давления используется для измерения давления в дыхательных путях, обеспечиваемого пациенту 10. Датчик 315 давления создает сигнал измеренного давления в дыхательных путях пациента, который передается контроллеру 350.

Устройство 320 подачи газа является устройством, способным подавать поток сжатого газа к патрубку 312 вдоха двухсегментного контура 310 пациента через отверстие 322 вдоха для создания положительного давления. Здесь газ может представлять собой смесь составляющих газов, например воздуха, кислорода, гелиево-кислородной смеси и т.д. В некоторых вариантах осуществления устройство 320 подачи газа способно принимать сжатый газ из внешнего источника (например, из резервуара или выпускного отверстия в стене) и управлять и/или регулировать поток газа в контуре 310 пациента. Устройство 320 подачи газа может включать в себя один или более клапанов и/или регуляторов потока.

Воздуходувка 330 имеет вход 332, способный принимать газ из патрубка 314 выдоха двухсегментного контура 310 пациента через отверстие 342 выдоха и дополнительно имеет выход 334 для выпуска газа, принятого из патрубка 314 выдоха.

Как показано на фиг. 3А, в первой фазе (вдох) дыхательного цикла контроллер 350 управляет клапаном 340 выдоха для закрытия прохода из отверстия 314 выдоха через отверстие 342 выдоха к двухходовому клапану 360. В некоторых вариантах осуществления контроллер 350 может выключать, снижать скорость или уменьшать подачу тока на воздуходувку 330 во время первой фазы (вдоха) дыхательного цикла.

Фиг. 3B представляет собой подробную иллюстрацию второго типового варианта осуществления системы 300 аппарата ИВЛ во время второй фазы (выдоха) дыхательного цикла. Как видно из фиг. 3B, во время второй фазы (выдоха) дыхательного цикла контроллер 350 управляет клапаном 340 выдоха для открытия прохода из отверстия 344 выдоха к двустороннему клапану 360. В некоторых вариантах осуществления во время периода экссуффляции фазы выдоха дыхательного цикла (например, во время перехода от вдоха к выдоху) контроллер 350 управляет двухходовым клапаном 360 для соединения входа 332 воздуходувки 330 с отверстием 314 выдоха через отверстие 344 выдоха и управляет воздуходувкой 330 для выпуска газа из выхода 334 воздуходувки для симуляции кашля, чтобы запустить секрецию. Кроме того, во время оставшейся фазы выдоха дыхательного цикла контроллер 350 управляет двухходовым клапаном 360 для соединения выпускного отверстия 370 аппарата ИВЛ с отверстием 314 выдоха через отверстие 342 выдоха. В некоторых вариантах осуществления контроллер 350 подает сигнал воздуходувке 330 для изменения или управления скоростью работы и для подачи тока на воздуходувку 330 и таким образом регулирует или контролирует отрицательное давление, подаваемое воздуходувкой 330.

Фиг. 3С представляет собой подробную иллюстрацию контроллера 350 с фиг. 3А. Контроллер 350 принимает сигнал измеренного давления в дыхательных путях пациента, например, от датчика 315 давления и подает выходные сигналы для управления воздуходувкой 330, клапаном 340 выдоха и двухходовым клапаном 360. В некоторых вариантах осуществления контроллер 350 подает выходные сигналы для управления воздуходувкой 330 и клапаном 340 выдоха для обеспечения целевого давления экссуффляции и давления во время фазы выдоха.

Фиг. 4 представляет собой подробную иллюстрацию третьего типового варианта осуществления системы аппарата ИВЛ, в которой интегрированная воздуходувка может использоваться для создания положительного давления/потока для дополнения потока газа при неинвазивной вентиляции (НИВЛ), когда поток газа из выпускного отверстия в стене или компрессора может быть ограничен или когда может быть ограничен поток газа через клапаны потока и/или регуляторы устройства подачи газа системы аппарата ИВЛ.

Система 400 аппарата ИВЛ содержит аппарат 405 ИВЛ с интегрированной воздуходувкой 430 и односегментный контур 410 пациента.

Аппарат 405 ИВЛ содержит: устройство подачи газа, создающее поток сжатого газа 420, и один или более клапанов 422 управления потоком для кислорода и воздуха; один или более датчиков 424 потока воздуха и кислорода; клапан 426 ограничения давления; датчик 428 давления; воздуходувку 430 и соответствующий ей одноходовой контрольный клапан 436 и контроллер 450. Аппарат 405 ИВЛ содержит интерфейсный порт 442 контура пациента для соединения с контуром 410 пациента. Аппарат 405 ИВЛ также включает в себя тройник 407 для соединения потока сжатого газа (например, кислорода и/или воздуха) от устройства подачи газа и потока сжатого воздуха под давлением из воздуходувки 430 для создания положительного давления.

Контур 410 пациента соединяется с маской 20 для подачи потока сжатого газа пациенту 10. Маска 20 может включать в себя отверстие пассивного выдоха или отверстие активного выдоха.

В некоторых вариантах осуществления поток сжатого газа 420 поступает из внешнего источника (например, из резервуара), например, через выпускное отверстие в стене.

Действующий контроллер 450 управляет устройством подачи газа (например, клапаном(ами) 422 управления потоком), воздуходувкой 430 и клапаном 426 ограничения давления в ответ на сигнал давления в дыхательных путях пациента от датчика 428 давления, показывающего измеренное давление в дыхательных путях пациента, и на сигнал датчика потока от одного или более датчиков 424 потока воздуха и/или кислорода, показывающий измеренный поток газа от устройства подачи газа. Воздуходувка 430 дополняет поток, подаваемый как поток сжатого газа 420, который в некоторых случаях может быть ограничен, например, когда аппарат ИВЛ 405 соединен с источником газа через выпускное отверстие в стене. При этом в некоторых случаях поток сжатого газа 420 может быть ограничен значением примерно 180 л/мин. В некоторых вариантах осуществления благодаря дополнительному потоку из воздуходувки 430 через выход 434 воздуходувки аппарат ИВЛ 405 способен обеспечить скорость потока газа порядка 250-300 л/мин.

Хотя здесь описаны предпочтительные варианты осуществления, возможно множество вариантов, не выходящих за пределы сущности и объема изобретения. Такие варианты станут понятны специалистам после изучения приведенных здесь описания, чертежей и формулы. Таким образом, изобретение не должно ограничиваться только объемом прилагаемой формулы.


АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ
АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ
АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ
АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ
АППАРАТ ИСКУССТВЕННОЙ ВЕНТИЛЯЦИИ ЛЕГКИХ С ИНТЕГРИРОВАННОЙ ВОЗДУХОДУВКОЙ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 1 329.
10.04.2013
№216.012.34b7

Трехмерная реконструкция тела и контура тела

Изобретение относится к области формирования медицинских изображений. Техническим результатом является улучшение управления для наведения биопсийной иглы в нужное место в ткани для усовершенствованного управления биопсией. Предлагается 3D-реконструкция тела и контура тела из трансверсально...
Тип: Изобретение
Номер охранного документа: 0002479038
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34c1

Способ и система для управления фоновой подсветкой в дисплее

Изобретение относится к конструктивным элементам средства отображения изображений, а именно к фоновой подсветке дисплея. Техническим результатом является устранение возможности восприятия наблюдателем структуры фоновой подсветки и ореола. Результат достигается тем, что дисплей (100) содержит...
Тип: Изобретение
Номер охранного документа: 0002479048
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34d8

Устройство для излучения поляризованного света

Настоящее изобретение касается светоизлучающего устройства, содержащего: кристалл (10) СИД, имеющий первую поверхность (12), вторую поверхность (14) и, по меньшей мере, одну боковую грань (16), соединяющую первую и вторую поверхности (12, 14). Кроме того, кристалл СИД содержит светополяризующий...
Тип: Изобретение
Номер охранного документа: 0002479071
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.357b

Машина для приготовления напитков, в частности кофе, оснащенная системами предотвращения образования накипи, и способ приготовления напитков, в частности кофе

Изобретение относится к области приготовления напитков. Машина для приготовления напитков, реализующая заявленный способ, с использованием горячей воды с гидравлическим контуром включает в себя емкость для воды, бойлер для нагревания воды, насос для подачи воды. Также содержит устройство для...
Тип: Изобретение
Номер охранного документа: 0002479244
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3799

Осветительное устройство

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности охлаждения. Осветительное устройство содержит, по меньшей мере, источник (13, 33) света, светоизлучающую поверхность, отверстия (8, 9, 28) для впуска воздуха, отверстия (8, 9, 28) для выпуска...
Тип: Изобретение
Номер охранного документа: 0002479786
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.379a

Парогенерирующее устройство, снабженное гидрофильным покрытием

Изобретение относится к парогенерирующему устройству, а также способу изготовления гидрофильного покрытия в паровой камере парогенерирующего устройства и утюгу, содержащему парогенерирующее устройство. Парогенерирующее устройство содержит паровую камеру, покрытую гидрофильным покрытием....
Тип: Изобретение
Номер охранного документа: 0002479787
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.37e0

Определение пространственного распределения отдачи сцинтиллятора

Изобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор. В предложенном способе получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении не требуется облучение сцинтиллятора...
Тип: Изобретение
Номер охранного документа: 0002479857
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3842

Устройство и способ освещения на основе сид с высоким коэффициентом мощности

Способ и устройство управления питанием, в которых импульсный источник питания обеспечивает коррекцию коэффициента мощности и подачу выходного напряжения в нагрузку при помощи управления единственным ключом, не требуя никакой информации обратной связи, связанной с нагрузкой. Единственный ключ...
Тип: Изобретение
Номер охранного документа: 0002479955
Дата охранного документа: 20.04.2013
20.04.2013
№216.012.3843

Осветительное устройство для полов

Изобретение относится к осветительному устройству, в частности осветительной плитке (100, 100′) для покрытия, например, области пола (1), и может быть использовано для направления движения пассажиров в общественных местах, например в аэропорту. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002479956
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.38fa

Комбинированная система фотоакустического и ультразвукового формирования изображений

Изобретение относится к медицинской технике, а именно с системам и способам формирования изображений при диагностике биообъектов. Система содержит лазер для генерации фотоакустических сигналов, преобразователь, канал ультразвукового сигнала, канал фотоакустического сигнала, блок оценки движения...
Тип: Изобретение
Номер охранного документа: 0002480147
Дата охранного документа: 27.04.2013
+ добавить свой РИД