×
27.05.2016
216.015.42d0

Результат интеллектуальной деятельности: ИМПЛАНТИРОВАННОЕ ИОНАМИ ЦИНКА КВАРЦЕВОЕ СТЕКЛО

Вид РИД

Изобретение

Аннотация: Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем. Кварцевое стекло представляет собой основу из диоксида кремния с модифицированным поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Стекло получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C. Полученное стекло характеризуется повышенной удельной интенсивностью в зеленой области спектра (500-600 нм). 2 ил., 1 табл., 3 пр.
Основные результаты: Имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, отличающееся тем, что оно получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C, при этом нанокластеры ZnSiO имеют диаметры 4-10 нм и распределены в поверхностном слое стекла на глубине 10-50 нм.

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем.

Известен коммерческий люминофор в виде кристаллов и порошков виллемита Zn2SiO4, активированных марганцем [James Н. Schulman J. Appl. Phys. 17, 902 (1946)]. Материал характеризуется полосой фотолюминесценции в зеленой области спектра 500÷550 нм. Однако материал не соответствует требованиям при создании нового поколения приборов оптоэлектроники и нанофотоники с повышенной степенью интеграции светоизлучающих компонентов, в частности, при разработке эффективных микроминиатюрных источников света для планарных тонкопленочных волноводных систем с соответствующей областью прозрачности.

Прототипом изобретения является имплантированное ионами цинка кварцевое стекло [Y. Shen et al. Fabrication and thermal evolution of nanoparticles in SiO2 by Zn ion implantation. Journal of Crystal Growth, 2009, 311, 4605-4609]. Стекло содержит четыре фазы - основу из диоксида кремния, а также микровключения металлического цинка, оксида цинка ZnO и виллемита Zn2SiO4. Фазовый состав определен методом рентгеновской дифракции. Композит получен путем имплантации в диоксид кремния ионов цинка в непрерывном режиме облучения с энергией 45 кэВ, с последующим отжигом полученного материала при температуре 700÷900°C в течение одного часа в кислородной атмосфере. Фаза виллемита образуется при температуре отжига не менее 900°C.

Недостатком прототипа является пониженная удельная интенсивность излучения в зеленой области спектра 500÷600 нм вследствие присутствия фаз металлического цинка и ZnO, обуславливающих наличие полос оптического поглощения в спектральной области 250÷350 нм, что приводит к значительному снижению выхода люминесценции в указанных диапазонах спектра.

Задачей изобретения является создание кварцевого стекла в виде основы SiO2, имеющего зеленое излучение в видимой области (500÷600 нм) с высокой удельной интенсивностью и обеспечение возможности использования кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники.

Для решения указанной задачи имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим микрокристаллы виллемита Zn2SiO4, отличается тем, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм.

Фазовый состав стекла определен методом рентгеновской дифракции (фиг. 1). В дифрактограммах имплантированного и отожженного стекла присутствуют рефлексы 110 и 220 (индексы Миллера), соответствующие фазе Zn2SiO4, включающей кристаллические нанокластеры Zn2SiO4, с диаметрами 4÷10 нм, распределенные в поверхностном слое стекла на глубинах 10÷50 нм, и присутствует рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2. Размер и распределение наночастиц контролировалось методами электронной микроскопии и рентгеновской дифракции. Отсутствие в стекле фаз металлического Zn и оксида ZnO обеспечивает оптическую прозрачность стекла в спектральной области 200÷350 нм, что способствует повышению выхода люминесценции стекла в зеленой области спектра (500÷600 нм, фиг. 2, сплошная линия). Кроме того, возникшая в стекле оптическая прозрачность в области 200÷350 нм обеспечивает возможность введения в стекло дополнительных соактиваторов и сенсибилизаторов люминесценции, имеющих полосы поглощения в этой области спектра и обеспечивающих дополнительное повышение интенсивности излучения стекла в зеленой области спектра.

При фотовозбуждении в ультрафиолетовой области спектра предложенное кварцевое стекло имеет высокое удельное излучение в зеленой полосе спектра (500÷600 нм) с максимумом 521 нм (фиг. 2, сплошная линия). Удельная интенсивность люминесценции полученного материала (фиг. 2, сплошная линия) в 10 раз превышает удельную интенсивность свечения керамики Zn2SiO4 в этой же области спектра (фиг. 2, пунктир). Удельная интенсивность здесь - это отношение интенсивности к объему излучающего слоя, представляющего собой в данном случае поверхностный слой кварцевого стекла размерами 1 см × 1 см × 50 нм.

Новый технический результат - повышение удельной интенсивности излучения и возможность использования в микроминиатюрных устройствах оптоэлектроники и фотоники, обеспечивается в предложенном стекле за счет того, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. При этом высокая интенсивность излучения в зеленой области спектра (500÷600 нм) обеспечена за счет содержания в поверхностном слое стекла монофазных включений в виде кристаллических нанокластеров Zn2SiO4, имеющих диаметры 4÷10 нм и за счет оптической прозрачности стекла в спектральной области 200÷350 нм.

Увеличение диаметра нанокристаллов более 10 нм приводит к плавному снижению удельной интенсивности зеленого излучения (максимум 521 нм) предложенного стекла. При диаметре нанокристаллов менее 4 нм полоса зеленой люминесценции с максимумом 521 нм в предложенном стекле не проявляется.

Образование нанокристаллов Zn2SiO4 в кварцевом стекле на глубинах менее 10 нм приводит к деградации свойств стекла за счет химического взаимодействия с окружающей средой через слишком тонкий защитный слой диоксида кремния. Формирование нанокристаллов на глубинах более 50 нм не соответствует требованиям при создании современных приборов оптоэлектроники и фотоники с повышенной степенью интеграции светоизлучающих компонентов, а также приводит к необходимости пропорционального увеличения энергии и дозы ионного облучения, что не эффективно.

Повышенная интенсивность излучения в зеленой области спектра является новым, неожиданным техническим результатом изобретения. Другим неожиданным техническим результатом является возможность использования предложенного кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники. Это обеспечивает, в частности, повышение эффективности работы микроминиатюрных источников света в планарных тонкопленочных волноводных системах.

Изобретение поясняется фигурами, на которых изображены:

фиг. 1 - рентгеновская дифрактограмма предложенного стекла, содержащая рефлексы 110 и 220 фазы Zn2SiO4. и рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2; по оси абсцисс отложен угол дифракции рентгеновских лучей (, град), по оси ординат отложена интенсивность рентгеновского излучения (отн. ед.);

фиг. 2 - спектры излучения предложенного стекла (сплошная линия) и стекла по прототипу (пунктир), по оси абсцисс отложены длины волн излучения в нм, по оси ординат - удельная интенсивность излучения в относительных единицах.

Предложенное кварцевое стекло получают следующим образом.

Имплантацию ионов цинка в кварцевое стекло SiO2 осуществляют с помощью ионного источника, работающего в импульсном режиме при указанных ниже в таблице параметрах, а также при глубине вакуума (1,4÷2,5)×10-4 Торр. Перед имплантацией вакуум-камеру ионного источника откачивают турбомолекулярным насосом до давления 3×10-5 Торр. Для удаления примесей катода проводят предварительную имплантацию в течение нескольких минут в экран, установленный перед анодом. В качестве катода используют гранулированный цинк с содержанием основного компонента 99,6%, в качестве анода - образцы аморфного кварцевого стекла типа КУ. Перед имплантацией образцы кварцевого стекла промывают в спирте в ультразвуковой ванне.

Отжиг кварцевого стекла после его имплантации ионами цинка производят в воздушной атмосфере с использованием электропечи сопротивления (типа НТ 40/16).

Полученные образцы кварцевого стекла представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 1 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры Zn2SiO4, нижележащая основа образца состоит из нелегированного диоксида кремния. Фотолюминесценцию полученного кварцевого стекла возбуждают ультрафиолетовым излучением с энергией фотонов в интервале 3÷6 эВ через монохроматор. Фотолюминесцентные спектры регистрируют с помощью фотоумножителя R6358P Hamamatsu.

В нижеуказанной таблице приведены режимы импульсного облучения ионами цинка основы из диоксида кремния, режимы отжига, а также удельные интенсивности излучения полученных образцов (1, 2, 3) предложенного кварцевого стекла.

Фотолюминесцентный спектр излучения образца №3 полученного кварцевого стекла приведен на фиг. 2 (сплошная линия). Спектры излучения образцов №1 и №2 по форме соответствуют спектру образца №3, отличаясь амплитудами излучения, указанными в таблице.

Ниже описаны примеры образцов предложенного кварцевого стекла. Номера примеров соответствуют номерам образцов в таблице.

Пример 1. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,35 мс, частотой повторения импульсов 17 Гц, импульсной плотностью ионного тока 0,85 мА/см2, дозой облучения 4,7×1016 ион/см2 и энергией ионов цинка 33 кэВ, при температуре диоксида кремния не более 350°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 870°C в течение 60 мин в воздушной атмосфере. Полученный образец №1 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность удельного излучения полученного образца №1 составила 2311 отн. ед. в максимуме на длине волны 521 нм.

Пример 2. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,3 мс, частотой повторения импульсов 12,5 Гц, импульсной плотностью ионного тока 0,8 мА/см2, дозой облучения 4,5×1016 ион/см2 и энергией ионов цинка 30 кэВ, при температуре диоксида кремния не более 60°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 850°C в течение 50 мин в воздушной атмосфере. Полученный образец №2 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №2 составила 1956 отн. ед. в максимуме на длине волны 521 нм.

Пример 3. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,4 мс, частотой повторения импульсов 20 Гц, импульсной плотностью ионного тока 0,6 мА/см2, дозой облучения 5×1016 ион/см2 и энергией ионов цинка 35 кэВ, при температуре диоксида кремния не более 200°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 900°C в течение 70 мин в воздушной атмосфере. Полученный образец №3 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №3 составила 2483 отн. ед. в максимуме на длине волны 521 нм.

Имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, отличающееся тем, что оно получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C, при этом нанокластеры ZnSiO имеют диаметры 4-10 нм и распределены в поверхностном слое стекла на глубине 10-50 нм.
ИМПЛАНТИРОВАННОЕ ИОНАМИ ЦИНКА КВАРЦЕВОЕ СТЕКЛО

Источник поступления информации: Роспатент

Показаны записи 81-90 из 118.
27.03.2016
№216.014.c7a2

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя,...
Тип: Изобретение
Номер охранного документа: 0002578881
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.04f6

Кислотостойкая композиция для ремонта эмалевых покрытий

Изобретение относиться к средствам для ремонта повреждений и защиты от коррозии в месте повреждения стеклоэмалевых покрытий технологического оборудования химических предприятий, систем трубопроводов, другого оборудования технического назначения и может быть применено на предприятиях химической...
Тип: Изобретение
Номер охранного документа: 0002587678
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b7a

Способ получения полос из немерных отрезков труб

Изобретение относится к методам утилизации немерных концов труб предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки, плющение отрезков с получением плоского профиля. Получение товарного продукта без применения энергоемких процессов...
Тип: Изобретение
Номер охранного документа: 0002579856
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c4c

Биобарабан для аэробной переработки сырья

Изобретение может быть использовано в биоэнергетике в качестве универсального аэробного реактора для переработки в удобрение навоза животных, помета птиц, зеленой массы, бытовых и других сельскохозяйственных и лесных отходов биосырья. Биобарабан содержит цилиндрический корпус на роликоопорах с...
Тип: Изобретение
Номер охранного документа: 0002579789
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d33

Способ продольной прокатки труб

Изобретение относится к обработке металлов давлением и может быть использовано при прокатке труб в станах продольной прокатки. Способ включает прокатку гильзы-трубы в валках с калибрами, придание гильзе овальной формы непосредственно перед валками стана продольной прокатки труб. Повышение...
Тип: Изобретение
Номер охранного документа: 0002579857
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2df0

Способ для измерения перемещений (варианты)

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим. При этом формируют два дополнительных световых потока на...
Тип: Изобретение
Номер охранного документа: 0002579812
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e03

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов,...
Тип: Изобретение
Номер охранного документа: 0002579766
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e4f

Система ускоренной аэробной переработки биомассы

Система относится к области биотехнологий в сельском и лесном хозяйствах и может быть использована для ускоренной ферментационной переработки отходов жизнедеятельности животных, населения и птиц, а также других видов биомассы. Система содержит устройство подготовки перерабатываемой жидкой...
Тип: Изобретение
Номер охранного документа: 0002579787
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e56

Способ бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий и устройство для его осуществления

Изобретение относится к технике неразрушающего контроля изделий, а именно к устройствам для бесконтактного измерения отклонений от номинального значения внутренних размеров металлических изделий с использованием электромагнитного излучения СВЧ-диапазона, и может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002579644
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb1

Способ получения изделий типа стакан из немерных концов труб

Изобретение относится к области металлургии, а точнее к методам утилизации немерных концов труб, предпочтительно из нержавеющей стали. Способ включает разделку исходной трубы на мерные и немерные отрезки. При этом немерные отрезки дополнительно нарезают на заготовки определенной длины....
Тип: Изобретение
Номер охранного документа: 0002580257
Дата охранного документа: 10.04.2016
Показаны записи 81-90 из 173.
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0454

Способ термолучевой обработки вещества тл-осл твердотельного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002532506
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04d9

Минитеплоцентраль для выравнивания графика нагрузки в электрических сетях

Изобретение относится к электроэнергетике. Минитеплоцентраль содержит замкнутый контур низкокипящего рабочего тела, состоящий из теплообменника, турбины, конденсатора и циркуляционного насоса, причем к его теплообменнику подключен гидравлический теплоаккумулятор, оснащенный...
Тип: Изобретение
Номер охранного документа: 0002532639
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.05de

Способ синтеза 2-додецил-5-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1-ил)тиофена - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 2-додецил-5-(2,3,7,8-бис-(9H,10H-антрацен-9,10-диил)пирен-1-ил)тиофена, который заключается во взаимодействии 1-бромпирена с 2-додецил-5-трибутилстаннилтиофеном по реакции Стилле с получением первого полупродукта 5-(пирен-1-ил)-2-додецилтиофена, с...
Тип: Изобретение
Номер охранного документа: 0002532903
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.05f1

Способ определения меди в природных и питьевых водах

Изобретение относится к способу определения меди в природных и питьевых водах. Способ включает концентрирование меди на сорбционном материале, помещенном в патрон, путем пропускания через него анализируемой пробы, элюирование меди азотной кислотой и определение меди методами атомной...
Тип: Изобретение
Номер охранного документа: 0002532922
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0866

Резистивный материал

Изобретение относится к радио- и микроэлектронике, а именно к резистивному материалу, содержащему халькогениды серебра, мышьяка и германия. При этом материал дополнительно содержит селенид меди согласно эмпирической формуле: (AgSe)·(CuSe)·(AsSe)·(GeSe), где 0,6≤х≤0,95. Материал обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002533551
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.08ac

Устройство для раскатки и раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Корпус устройства имеет присоединительную и рабочую части, центральный осевой канал, рабочие ролики, цилиндр и шток с возвратной пружиной. Цилиндр и шток имеют конические участки, являющиеся...
Тип: Изобретение
Номер охранного документа: 0002533621
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.09b0

Раствор для гидрохимического осаждения полупроводниковых пленок сульфида индия

Изобретение относится к технологии получения изделий оптоэлектроники и солнечной энергетики, а именно к раствору для гидрохимического осаждения полупроводниковых пленок сульфида индия(III). Раствор содержит соль индия(III), винную кислоту, тиоацетамид, гидроксиламин солянокислый при следующих...
Тип: Изобретение
Номер охранного документа: 0002533888
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0acd

Способ получения конвертера вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния sio на кремниевой подложке

Изобретение относится к способу получения люминесцентного материала - конвертера вакуумного ультрафиолетового излучения в излучение видимого диапазона в виде аморфной пленки оксида кремния SiO на кремниевой подложке, предназначенного для создания функциональных элементов фотонных приборов...
Тип: Изобретение
Номер охранного документа: 0002534173
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0c6e

Система аккумулирования возобновляемой энергии

Изобретение относится к получению спирта. Система аккумулирования возобновляемой энергии представляет собой блок источников возобновляемой энергии, подключенный к технологической схеме получения спирта. Блок источников возобновляемой энергии обеспечивает тепловую и электрическую энергию для...
Тип: Изобретение
Номер охранного документа: 0002534590
Дата охранного документа: 27.11.2014
+ добавить свой РИД