×
27.05.2016
216.015.42c1

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ И СЫПУЧИХ СРЕД

Вид РИД

Изобретение

№ охранного документа
0002585320
Дата охранного документа
27.05.2016
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и сыпучих сред содержит генератор СВЧ, соединенный с его выходом делитель мощности, два циркулятора, первые выводы циркуляторов соединены с выходами делителя мощности, вторые выводы соединены с приемо-передающими антеннами, направленными под одинаковым углом по направлению потока и против него, третьи выводы соединены с входами смесителя, выход смесителя соединен с вычисляющим устройством. Технический результат - повышение чувствительности измерения скорости потока. 1 ил.
Основные результаты: Устройство для измерения расхода жидких и сыпучих сред, содержащее генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя, отличающееся тем, что содержит делитель мощности, входом соединенный с выходом генератора СВЧ, второй циркулятор и вторую приемопередающую антенну, направленную через радиопрозрачное окно в трубопроводе под тем же углом, в противоположном направлении к движению потока, при этом первые выводы циркуляторов соединены с выходами делителя мощности, вторые выводы соединены с приемо-передающими антеннами, а третьи выводы соединены с входами смесителя.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др.

В настоящее время известны и применяются много типов анеометров и расходомеров, основанных на разных физических принципах действия, среди которых актуальны доплеровские радиоволновые способы измерения скорости потока из-за своей способности работать в сложных эксплуатационных условиях (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 133-144 с.). Эти способы не предполагают применение элементов внутри труб, контактирующих со средой, создающих препятствия и неоднородности в потоке, устойчивы к температурным характеристикам эксплуатации. Обычно функциональная схема доплеровского измерителя в простейшем случае содержит генератор электромагнитных колебаний, которые поступают на передающую антенну. Излучаемые антенной волны через радиопрозрачное окно в стенке трубопровода поступают внутрь и рассеиваются на неоднородностях движущегося вещества и поступают на приемную антенну с частотой f, отличной от частоты f0 зондирующей волны на частоту fд. Неоднородностями вещества при этом могут быть частицы сыпучего материала, газовые и твердые включения в жидкости, твердые частицы и капли жидкости в потоке газа, обладающие электрофизическими параметрами ε, отличными от таковых для контролируемого вещества. Направления движения неоднородностей образуют различные углы с направлением этой волны. Произвольная ориентация неоднородностей, случайные значения фазы отраженных каждой неоднородностью сигналов приводят к образованию доплеровского сигнала сложной формы. Тем не менее, средняя доплеровская частота связана со средней скоростью потока по формуле:

где α - угол между направлением излучения и потоком в трубе, - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, c - скорость света в вакууме. Зная объемную плотность ρ вещества и скорость ν потока, можно определить массовый расход:

где S - площадь поперечного сечения потока на измерительном участке. Подставив значение v из выражения (1) в (2), получим выражение для среднего массового расхода

Как видно из формулы на точность определения расхода при постоянных величинах плотности и диэлектрической проницаемости сильно влияет точность определения средней доплеровской частоты.

Известно техническое решение - доплеровский расходомер, содержащий генератор СВЧ, направленный ответвитель, циркулятор, приемо-передающую антенну, смеситель, полосовой фильтр, регистрирующее устройство, по технической сущности наиболее близкое к предлагаемому устройству и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 136-137 с.). Доплеровский сигнал в данном устройстве выделялся на выходе смесителя, на один вход которого поступал опорный сигнал от задающего генератора через направленный ответвитель, а на второй - сигнал, отраженный от потока вещества после облучения его через приемо-передающую антенну под углом α к потоку в трубе через радиопрозрачное окно. При этом для связи между генератором, антенной и смесителем использовался циркулятор. После фильтрации и записи доплеровского сигнала определялся его спектр, по максимуму которого определялась средняя доплеровская частота, по которой оценивался расход в соответствии с формулой (3).

Данное измерительное устройство имеет существенный недостаток. Поскольку поток вещества имеет заметную турбулентность и локальные неоднородности, спектр доплеровского сигнала имеет сложный вид, зачастую с рядом равноценных пиков, что затрудняет определение максимума. Это происходит еще и из-за того, что в полосу частот фильтра попадают паразитные сигналы от вибраций трубопровода, которые имеют место при использовании расходомера в условиях технологического процесса. Все это снижает точность определения массового расхода.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что устройство для измерения расхода жидких и сыпучих сред содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя. Дополнительно содержит делитель мощности, входом соединенный с выходом генератора СВЧ, второй циркулятор и вторую приемопередающую антенну, направленную через радиопрозрачное окно в трубопроводе под тем же углом, в противоположном направлении к движению потока, при этом первые выводы циркуляторов соединены с выходами делителя мощности, вторые выводы соединены с приемо-передающими антеннами, а третьи выводы соединены с входами смесителя.

Предлагаемое устройство поясняется чертежом, где приведена его структурная схема.

Устройство содержит генератор СВЧ 1, делитель мощности 2, циркуляторы 3 и 6, приемопередающие антенны 4 и 5, смеситель 7 и вычислительный блок 8.

Устройство работает следующим образом.

Электромагнитные колебания генератора СВЧ 1 с частотой f0 делятся пополам на делителе мощности 2, после чего поступают через циркуляторы 3 и 6 на приемопередающие антенны 4 и 5, после чего излучаются через радиопрозрачные окна 10 в трубопроводе 9. Антенны расположены таким образом, что их излучение для одной направлено под углом α по направлению потока, а для другой - против направления потока под этим же углом α.

Средняя принимаемая каждой из антенн мощность, рассеянная потоком -

где Риз - излучаемая мощность; G - коэффициент усиления каждой из антенн; λ - длина зондирующей волны в среде; - площадь эффективного сечения рассеяния от неоднородностей в среде; - среднее эффективное расстояние между антенной и неоднородностями в среде. Предположим, что концентрация неоднородностей в трубопроводе одинакова, а сами они совершают хаотические небольшие перемещения с равной вероятностью по разным направлениям, что происходит при наличии турбулентности. Если в трубопроводе нет никакого течения, то на смеситель приходят от антенн две совокупности сигналов с одинаковым спектром - , где N - число неоднородностей в зоне действия антенн, Ai - амплитуда сигнала с частотой fi отраженного от i-ой неоднородности. Частота fi отличается от f0 на некоторую доплеровскую составляющую, носящую случайный характер и вызванную случайным вектором скорости , где αi - угол между направлением излучения и вектором скорости i-ой частицы в среде. В результате на выходе смесителя будет минимальный уровень из-за взаимного вычитания сигналов с одинаковым вероятностным распределением.

При наличии течения со средней скоростью потока неоднородности приобретают дополнительное направленное движение вдоль трубопровода в направлении, показанном на чертеже. Тогда принимаемые антеннами 4 и 5 электромагнитные колебания для антенн, направленных против потока Sf- и по нему Sf+ под одинаковыми углами α, в соответствии с законом Доплера, определятся как

и

где .

Сигнал на выходе смесителя будет равен разности частот входящих сигналов Sf- и Sf+

, а будет определена как частота максимума этого спектра. Таким образом, частота среднего доплеровского сигнала в этом случае будет в два раза выше, чем у прототипа, при той же средней скорости потока . Определение , скорости потока и массового расхода согласно формулам (1) и (3) происходит в вычислительном блоке 8.

В результате чувствительность измерения скорости потока и расхода по доплеровской частоте согласно формулам (1) и (3) возрастает в два раза, что приводит к увеличению точности. Кроме этого дифференциальная схема измерения приводит к тому, что паразитные сигналы от вибраций и турбулентностей из-за своей синфазности одинаково воздействуют на оба канала и их частоты вычитаются, а остаются только составляющие, связанные с направлением течения потока, что позволяет определить максимум спектра доплеровского сигнала со значительно большей точностью.

Устройство для измерения расхода жидких и сыпучих сред, содержащее генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению движения потока, смеситель, вычислительный блок, соединенный с выходом смесителя, отличающееся тем, что содержит делитель мощности, входом соединенный с выходом генератора СВЧ, второй циркулятор и вторую приемопередающую антенну, направленную через радиопрозрачное окно в трубопроводе под тем же углом, в противоположном направлении к движению потока, при этом первые выводы циркуляторов соединены с выходами делителя мощности, вторые выводы соединены с приемо-передающими антеннами, а третьи выводы соединены с входами смесителя.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ И СЫПУЧИХ СРЕД
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССОВОГО РАСХОДА ЖИДКИХ И СЫПУЧИХ СРЕД
Источник поступления информации: Роспатент

Показаны записи 171-180 из 276.
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4378

Способ измерения уровня и проводимости электропроводящей среды и устройство для его осуществления

Изобретения относятся к электрическим методам измерения и предназначены для определения уровня и проводимости электропроводящей жидкости в резервуарах в условиях неконтролируемого изменения ее проводимости. Предлагаемый способ измерения и устройство для его осуществления позволяют исключить эту...
Тип: Изобретение
Номер охранного документа: 0002649672
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4741

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности в предлагаемом способе измерения уровня жидкости в емкости достигается тем, что в сторону поверхности жидкости по нормали к...
Тип: Изобретение
Номер охранного документа: 0002650611
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.491d

Гибридный летательный аппарат

Изобретение относится к области воздухоплавательной техники. Гибридный летательный аппарат содержит оболочку и двигатели с воздушными винтами. Оболочка выполнена в форме тора и имеет внутренний жесткий каркас, при этом в центральном отверстии тора, перпендикулярно плоскости каркаса, установлена...
Тип: Изобретение
Номер охранного документа: 0002651305
Дата охранного документа: 19.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5686

Способ искусственной перекачки физиологической жидкости

Изобретение относится к кардиологии и может быть использовано для перекачивания крови. Способ осуществляется с помощью насоса, в котором используют волнообразное движение текучей среды в замкнутом объеме, создаваемое сжатием и растяжением пьезоэлементов путем подачи переменного трехфазного...
Тип: Изобретение
Номер охранного документа: 0002654618
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5721

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Устройство содержит генератор СВЧ, передающую и приемную...
Тип: Изобретение
Номер охранного документа: 0002654929
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5768

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Технический результат - повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002654926
Дата охранного документа: 23.05.2018
Показаны записи 171-180 из 181.
29.05.2018
№218.016.5768

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких и сыпучих сред в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов и др. Технический результат - повышение точности измерения...
Тип: Изобретение
Номер охранного документа: 0002654926
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.57c3

Способ измерения вектора путевой скорости транспортного средства

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости достигается тем, что в способе измерения...
Тип: Изобретение
Номер охранного документа: 0002654931
Дата охранного документа: 23.05.2018
05.07.2018
№218.016.6c1d

Измеритель путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный...
Тип: Изобретение
Номер охранного документа: 0002659821
Дата охранного документа: 04.07.2018
02.08.2018
№218.016.778c

Способ измерения путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный результат...
Тип: Изобретение
Номер охранного документа: 0002662803
Дата охранного документа: 31.07.2018
09.08.2018
№218.016.7922

Радиоволновый способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002663215
Дата охранного документа: 02.08.2018
11.10.2018
№218.016.9087

Доплеровский измеритель путевой скорости

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что доплеровский...
Тип: Изобретение
Номер охранного документа: 0002669016
Дата охранного документа: 05.10.2018
30.03.2019
№219.016.f979

Способ измерения путевой скорости

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения путевой скорости транспортного средства -...
Тип: Изобретение
Номер охранного документа: 0002683578
Дата охранного документа: 29.03.2019
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
+ добавить свой РИД