×
27.05.2016
216.015.420a

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора (СТ) подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего СТ. К резисторному ограничителю тока заряда подключен первый электрод коммутатора. Первичная обмотка повышающего СТ подключена к источнику напряжения переменного тока. Через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего СТ. Эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами. Блок регистрации и обработки сигнала содержит первый и второй АЦП, первый и второй блоки быстрого преобразования Фурье (ББПФ), блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных. Первый АЦП подключен к потенциальному выходу тестируемого токового шунта и к первому ББПФ. Второй АЦП подключен к выходу эталонного трансформатора тока и к второму ББПФ, который соединен с блоком функционального преобразования. Блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго АЦП, а блок сравнения спектров подключен к выходам первого и второго ББПФ. Технический результат заключается в снижении влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров. 2 ил.
Основные результаты: Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов, содержащее источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования, отличающееся тем, что блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных, блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов.

Известен измеритель относительных амплитудно-частотных характеристик [RU 2291452 C2, МПК G01R 27/28 (2006.01), опубл. 01.11.2001], содержащий генератор качающейся частоты, выход которого подключен к входу измеряемого объекта, выход которого подключен к входам амплитудного детектора и формирователя опорного сигнала, выполненного в виде последовательно соединенных преобразователя частоты в код, дешифратора и блока хранения и выборки, выход которого является выходом формирователя опорного сигнала, а второй вход соединен с входом преобразователя частоты в код, являющегося входом формирователя опорного сигнала, последовательно соединенные преобразователь частоты в напряжение, дифференциатор, компаратор и согласующий блок, выход которого подключен к второму входу индикатора, вход преобразователя частоты в напряжение подключен к выходу генератора качающейся частоты, а второй вход компаратора соединен с общей шиной. Последовательно соединены масштабный усилитель, амплитудный селектор, временной селектор, декадный счетчик и второй дешифратор, выход которого подключен к третьему входу индикатора, первый вход которого соединен с первым входом амплитудного селектора и выходом делителя, второй вход которого соединен с выходом амплитудного детектора, а первый соединен с выходом формирователя опорного сигнала и входом масштабного усилителя. Второй вход временного селектора соединен с входной шиной.

Недостатками этого устройства являются невозможность определения фазочастотной характеристики.

Известно устройство для определения амплитудно-частотных характеристик токовых шунтов [Cherbaucich С., Crotti G., Kuljaca N., Novo M. Evaluation of the dynamic behaviour of heavy current shunts // Metrology in the 3rd Millennium: Proc. XVII IMEKO World Congress. - 22-27 June, 2003. - Dubrovnik, Croatia, 2003. - P. 586-589], содержащее источник импульсного тока, в котором последовательно соединены резисторный ограничитель тока заряда, накопитель энергии из коаксиального кабеля и коммутатор (газоразрядное устройство), к которому подключен эталонный трансформатор тока и тестируемый шунт. Источник импульсного тока подключен к источнику постоянного напряжения. Амплитудно-частотную характеристику шунта определяют как отношение односторонней функции спектральной плотности сигнала с выхода трансформатора тока к односторонней функции спектральной плотности сигнала с выхода шунта на заданной частоте. Результаты визуализируют в виде графической зависимости.

Недостатки данного устройства заключаются в невозможности определения фазочастотной характеристики шунта и в уменьшении точности определения амплитудно-частотной характеристики из-за погрешности квантования аналого-цифрового преобразователя цифрового осциллографа.

Известно устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов [Заревич А.И., Муравьев С.В., Бедарева Е.В., Карпенко С.Р. Импульсный метод определения частотных характеристик сильноточных шунтов // Известия Томского политехнического университета. - 2012. - Т. 321. - №4. - С.137-140], выбранное в качестве прототипа (фиг. 1), содержащее источник импульсного тока 1 (ИИТ), в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора 2 подключен однополупериодный выпрямитель 3, к которому через резисторный ограничитель тока заряда 4 подключен накопитель энергии 5, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора 2. Накопитель энергии 5 выполнен на конденсаторах. К резисторному ограничителю тока заряда 4 подключен первый электрод коммутатора 6 (газоразрядное устройство). Первичная обмотка повышающего сетевого трансформатора 2 подключена к промышленному источнику напряжения переменного тока 7 с действующим значением выходного напряжения 220 В. Через контактные клеммы 8 тестируемый токовый шунт 9 подключен ко второму электроду коммутатора 6 и второму выводу вторичной обмотки повышающего сетевого трансформатора 2. Эталонный трансформатор тока 10 размещен между тестируемым токовым шунтом 9 и контактными клеммами 8. Блок регистрации и обработки сигнала 11 (БРОС) содержит первый аналого-цифровой преобразователь 12 (АЦП1), первый блок быстрого преобразования Фурье 13 (БПФ1), второй аналого-цифровой преобразователь 14 (АЦП2), второй блок быстрого преобразования Фурье 15 (БПФ2), блок функционального преобразования 16 (БФП), вычислительное устройство 17 (ВУ), дисплей 18 (Д), который подключены к общей цифровой шине данных 19. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к потенциальному выходу тестируемого токового шунта 9, а второй аналого-цифровой преобразователь 14 (АЦП2) - к выходу эталонного трансформатора тока 10. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к первому блоку быстрого преобразования Фурье 13 (БПФ1). Второй аналого-цифровой преобразователь 14 (АЦП2) подключен к второму блоку быстрого преобразования Фурье 15 (БПФ2), который соединен с блоком функционального преобразования 16 (БФП).

Недостатком указанного устройства является влияние на определяемые амплитудно-частотные и фазочастотные характеристики шунта неидентичности аналого-цифровых преобразователей. Это влияние проявляется в виде искажения спектра преобразуемых сигналов и в виде возрастания погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Поставленная задача решена за счет того, что устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов так же, как в прототипе, содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования.

Согласно изобретению блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.

Предложенная конструкция за счет формирования тестовых сигналов в форме треугольных импульсов с последующим сравнением их спектров и определением выравнивающих коэффициентов позволяет скомпенсировать неодинаковость аналого-цифровых преобразователей, проявляющуюся в относительном искажении спектров сигналов. Таким образом, осуществляется снижение влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров.

На фиг. 1 представлена схема устройства-прототипа.

На фиг. 2 показана схема заявляемого устройства для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов.

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов (фиг. 2) содержит источник импульсного тока 1 (ИИТ), в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора 2 подключен однополупериодный выпрямитель 3, к которому через резисторный ограничитель тока заряда 4 подключен накопитель энергии 5, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора 2. Накопитель энергии 5 выполнен на конденсаторах. К резисторному ограничителю тока заряда 4 подключен первый электрод коммутатора 6 (газоразрядное устройство). Первичная обмотка повышающего сетевого трансформатора 2 подключена к промышленному источнику напряжения переменного тока 7 с действующим значением выходного напряжения 220 В. Через контактные клеммы 8 тестируемый токовый шунт 9 подключен ко второму электроду коммутатора 6 и второму выводу вторичной обмотки повышающего сетевого трансформатора 2. Эталонный трансформатор тока 10 размещен между тестируемым токовым шунтом 9 и контактными клеммами 8. Блок регистрации и обработки сигнала 11 (БРОС) содержит первый аналого-цифровой преобразователь 12 (АЦП1), первый блок быстрого преобразования Фурье 13 (БПФ1), второй аналого-цифровой преобразователь 14 (АЦП2), второй блок быстрого преобразования Фурье 15 (БПФ2), блок функционального преобразования 16 (БФП), вычислительное устройство 17 (ВУ), дисплей 18 (Д), которые подключены к общей цифровой шине данных 19. Блок регистрации и обработки сигнала 11 (БРОС) дополнительно содержит блок формирования треугольного импульса 20 (ФТИ), блок сравнения спектров 21 (БСС), которые также подключены к общей цифровой шине данных 19. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к потенциальному выходу тестируемого токового шунта 9, а второй аналого-цифровой преобразователь 14 (АЦП2) - к выходу эталонного трансформатора тока 10. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к первому блоку быстрого преобразования Фурье 13 (БПФ1). Второй аналого-цифровой преобразователь 14 (АЦП2) подключен к второму блоку быстрого преобразования Фурье 15 (БПФ2), который соединен с блоком функционального преобразования 16 (БФП). Блок формирования треугольного импульса 20 (ФТИ) подключен к входам первого и второго аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2). Блок сравнения спектров 21 (БСС) подключен к выходам первого и второго блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2).

Первый аналого-цифровой преобразователь 12 (АЦП1) и второй аналого-цифровые преобразователи 14 (АЦП2) реализованы с помощью аналого-цифровых преобразователей AD6649. Блоки быстрого преобразования Фурье 13 (БПФ1), 15 (БПФ2) реализованы с помощью цифровых сигнальных процессоров ADSP-21991. Блок функционального преобразования 16 (БФП) реализован с помощью цифрового сигнального процессора ADSP-21467. Вычислительное устройство 17 (ВУ) реализовано с помощью микропроцессора ADSP-BF523. Блоки формирования треугольного импульса 20 (ФТИ) и сравнения сигналов 21 (БСС) реализованы с помощью микроконтроллеров ADSP-TS201S.

Схемотехнические решения всех блоков устройства ориентированы на применение интегральной микроэлектронной элементной базы и возможность их дальнейшей более глубокой интеграции.

Устройство работает следующим образом.

В начале блок формирования треугольного импульса 20 (ФТИ) формирует тестовый сигнал в форме треугольного импульса с амплитудой, равной динамическому диапазону первого и второго аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2). С помощью аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2) этот сигнал переводят в массив чисел в двоичном формате, а с помощью блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2) подвергают быстрому преобразованию Фурье. Таким образом, получают два массива чисел, соответствующих спектрам сигналов с выходов первого аналого-цифрового преобразователя 12 (АЦП1) {S1i} второго аналого-цифрового преобразователя 14 (АЦП1) {S2i}, где i - номер числа в массиве.

Полученные массивы чисел поступают на входы блока сравнения спектров 21 (БСС), который определяет поэлементную разницу между ними и формирует массив выравнивающих коэффициентов {Ki}:

{Ki}={S1i/S2i}.

Результаты этих операций сохраняют в памяти вычислительного устройства 17 (ВУ) в виде массивов данных.

Далее вход тестируемого шунта 9 подключают к выходным клеммам 8 источника импульсного тока 1 (ИИТ); который подключают к источнику напряжения переменного тока 7, напряжение которого повышают сетевым трансформатором 2 до напряжения, на 50% превышающего напряжение срабатывания коммутатора (газоразрядного устройства) 6. Выходное напряжение сетевого трансформатора 2 выпрямляют однополупериодным выпрямителем 3 и через резисторный ограничитель тока заряда 4 заряжают им накопитель энергии 5. При достижении напряжением на накопителе энергии 5 значения пробоя газоразрядного устройства 6 оно срабатывает, при этом на выходных клеммах источника импульсного тока 8 развивается напряжение, и накопитель энергии 5 разряжается через тестируемый шунт 9.

Сигналы с выходов тестируемого шунта 9 и эталонного трансформатора тока 10 подают на входы блока регистрации и обработки сигнала 11 (БРОС) и с помощью аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2) переводят в массив чисел в двоичном формате, а с помощью блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2) подвергают быстрому преобразованию Фурье. Таким образом, получают два массива чисел, соответствующих спектрам сигналов с выходов тестируемого шунта {SШ,i} и эталонного трансформатора тока {SТ,i}, где i - номер числа в массиве.

Массив чисел, соответствующий спектру сигнала с выхода эталонного трансформатора тока {SТ,i}, подают на вход блока функционального преобразования 16 (БФП), где поэлементно умножают на массив выравнивающих коэффициентов {Ki}, получая, таким образом, выравненный спектр сигнала с выхода эталонного трансформатора тока {SТВ,i}:

{SТВ,i}={Ki*ST,i}.

После чего вычислительное устройство 17 (ВУ) определяет массив данных, соответствующих комплексному коэффициенту передачи токового шунта 9 {KШ,i}. Для этого вычислительное устройство 17 (ВУ) реализует поэлементное деление массивов {SШ,i} и {SТВ,i}:

{KШ,i}={SШ,i / SТВ,i}.

Модуль комплексного коэффициента передачи токового шунта 9 является его амплитудно-частотной характеристикой, а аргумент - фазочастотной характеристикой.

Результаты расчета комплексного коэффициента передачи шунта 9 также сохраняют в памяти вычислительного устройства 17 (ВУ) в виде массивов данных.

Визуализацию амплитудно-частотной и фазочастотной характеристик токового шунта 9 производят посредством дисплея 18 (Д).

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов, содержащее источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования, отличающееся тем, что блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных, блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 257.
09.06.2018
№218.016.5cd3

Способ определения интенсивности дождевых осадков в приземном слое атмосферы

Изобретение относится к способам контроля за состоянием и динамикой атмосферы, интегральных характеристик осадков, а именно к определению интенсивности дождевых осадков в приземном слое атмосферы по измеренной мощности дозы гамма-излучения. Способ определения интенсивности дождевых осадков в...
Тип: Изобретение
Номер охранного документа: 0002656118
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d04

Способ неразрушающего контроля неисправностей в электрической сети

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Способ неразрушающего контроля неисправностей в электрической сети включает соединение вводного щита через переходное сопротивление с...
Тип: Изобретение
Номер охранного документа: 0002656128
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d1d

Микромеханический гироскоп

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания. Микромеханический гироскоп содержит подвижную массу на двухосном резонансном подвесе, неподвижное основание, подвижные и...
Тип: Изобретение
Номер охранного документа: 0002656119
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d35

Способ определения концентрации кремния в воде

Изобретение относится к определению концентрации кремния в воде, а именно к определению кремния в присутствии гуминовых веществ, и может быть использовано в технологии очистки подземных и поверхностных вод от кремния как для технических, так и для питьевых целей. Заявленный способ определения...
Тип: Изобретение
Номер охранного документа: 0002656121
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d3d

Способ оценки радоноопасности участков застройки

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки. Способ оценки радоноопасности участков застройки заключается в том, что в основании фундамента строящегося здания на дне...
Тип: Изобретение
Номер охранного документа: 0002656131
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d57

Способ контроля сплошности диэлектрического покрытия металлической подложки

Изобретение относится к области электроискровой и газоразрядной дефектоскопии путем обнаружения локальных дефектов и может быть использовано для обнаружения дефектов диэлектрических покрытий деталей электротехнического и радиотехнического оборудования, а также для контроля герметичности...
Тип: Изобретение
Номер охранного документа: 0002656292
Дата охранного документа: 04.06.2018
09.06.2018
№218.016.5df7

Гидроизоляционная композиция

Изобретение относится к области гидротехнического и гражданского строительства и может быть использовано для гидроизоляции строительных сооружений, гидротехнических сооружений из низкотемпературных грунтов и пород, а также при строительстве и ремонте дорог. Описана гидроизоляционная композиция,...
Тип: Изобретение
Номер охранного документа: 0002656473
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f14

Электроимпульсный буровой наконечник

Изобретение относится к техническим средствам для бурения скважин в крепких горных породах, мерзлых грунтах электроимпульсным способом высоковольтными разрядами, развивающимися внутри горных пород, и может быть использовано в горнодобывающей и строительной отраслях промышленности, а также при...
Тип: Изобретение
Номер охранного документа: 0002656653
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5fc8

Устройство для исследования разрушения высоковольтными разрядами горных пород под давлением

Изобретение относится к техническим средствам для исследования разрушения горных пород высоковольтными импульсными разрядами в близких к реальным условиям в скважинах на больших глубинах и может быть использовано в нефте- и газодобывающей отрасли для изучения возможности и эффективности бурения...
Тип: Изобретение
Номер охранного документа: 0002656632
Дата охранного документа: 06.06.2018
16.06.2018
№218.016.6253

Гибридное транспортное средство с вентильным двигателем

Изобретение относится к гибридным транспортным средствам. Гибридное транспортное средство с вентильным двигателем содержит бортовой источник электроэнергии, к которому подключен накопитель электроэнергии, содержащий соединенные аккумуляторные батареи. Каждый преобразователь электроэнергии...
Тип: Изобретение
Номер охранного документа: 0002657707
Дата охранного документа: 14.06.2018
Показаны записи 141-144 из 144.
04.04.2018
№218.016.2f2b

Устройство для измерения переменных токов высоковольтной линии электропередачи

Изобретение относится к электротехнике, к устройствам для измерения переменных токов, и может быть использовано для измерения переменных токов, протекающих в высоковольтных линиях электропередачи. Технический результат состоит в снижении массогабаритных показателей. Устройство для измерения...
Тип: Изобретение
Номер охранного документа: 0002644574
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.32fe

Масляно-смоляная композиция

Изобретение относится к области органических высокомолекулярных соединений, а именно к составам для нанесения покрытий на основе масляно-смоляной композиции, и может быть использовано в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Масляно-смоляная композиция...
Тип: Изобретение
Номер охранного документа: 0002645486
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3338

Композиционная одноупаковочная силикатная краска

Изобретение относится к составам для нанесения покрытий, а именно к композиционным силикатным краскам с органическими добавками, и может быть использовано в строительстве и быту для защиты и декоративной отделки фасадов, а также для внутренних работ в зданиях и помещениях. Композиционная...
Тип: Изобретение
Номер охранного документа: 0002645502
Дата охранного документа: 21.02.2018
12.11.2018
№218.016.9c62

Модель конвективного теплопереноса в одиночной частице угольного топлива для целей создания установок газификации твердых топлив для энергетики и промышленности

Программа предназначена для решения задач конвективного тепломассопереноса в одиночной частице угольного топлива и может применяться в прикладных научных исследованиях с целью создания установок газификации твердых топлив для энергетики и промышленности, а также в учебном процессе вузов....
Тип: Программа для ЭВМ
Номер охранного документа: 2017616145
Дата охранного документа: 01.06.2017
+ добавить свой РИД