×
20.05.2016
216.015.3eb2

Результат интеллектуальной деятельности: ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ

Вид РИД

Изобретение

Авторы

Правообладатели

№ охранного документа
0002584127
Дата охранного документа
20.05.2016
Аннотация: Изобретение относится к диагностическим ультразвуковым системам для трехмерной визуализации. Ультразвуковая диагностическая система визуализации содержит ультразвуковой датчик, выполненный с возможностью сбора набора данных 3-мерного изображения объемной области, блок мультипланарного переформатирования, реагирующий на набор данных 3-мерного изображения, выполненный с возможностью формирования множества 2-мерных изображений, блок задания последовательности изображений, реагирующий на 2-мерные изображения, выполненный с возможностью формирования последовательности 2-мерных изображений, которые могут быть воспроизведены в виде последовательности 2-мерных изображений стандартного формата, порт данных, связанный с блоком задания последовательности изображений, выполненный с возможностью передачи последовательности 2-мерных изображений в другую систему визуализации, и дисплей просмотра последовательностей 2-мерных изображений. Система визуализации дополнительно содержит пользовательский интерфейс управления для выбора нормального направления через набор 3-мерных данных, который содержит выбор плоскости 2-мерного изображения, проходящей через набор 3-мерных данных, причем изображения последовательности 2-мерных изображений, сформированных блоком переформатирования данных изображения, параллельны плоскости выбранной плоскости 2-мерного изображения. Использование изобретения позволяет облегчить перенос и использование данных 3-мерного изображения на других платформах для медицинских изображений. 11 з.п. ф-лы, 4 ил.

Данное изобретение относится к диагностическим ультразвуковым системам и, в частности, к ультразвуковым системам для трехмерной (3-мерной) визуализации, которые способны экспортировать данные объемного изображения в виде последовательности плоских изображений.

В процессе ультразвуковой диагностической визуализации обычно сканировали двухмерные изображения поперечных сечений анатомических структур тела. К настоящему моменту развития технологии ультразвуком можно сканировать и визуализировать трехмерные объемы как в форме неподвижных изображений, так и в реальном времени. Наборы 3-мерных данных сканированного объема можно последовательно представлять как трехмерные изображения достаточно быстро для того, чтобы врач наблюдал перемещение анатомических структур в реальном времени. Но для радиологов и кардиологов по-прежнему привычнее просматривать стандартные 2-мерные плоские изображения анатомических структур, и многим из них еще неудобно диагностировать анатомические структуры в 3 измерениях, причем проблема осложняется помехами от ткани, которая часто окружает и загораживает изучаемую область в центре визуализируемого объема. В результате многие врачи предпочитают видеть плоские 2-мерные изображения в виде «слоев» 3-мерного объема. После того как набор данных 3-мерного изображения объема собран, метод, названный мультипланарным переформатированием, позволяет врачу выбирать, по меньшей мере, одну плоскость сечения, проходящую через объем, для наблюдения 2-мерных изображений. На обычном пользовательском интерфейсе врач может позиционировать три ортогональные прямые линии в изображении объема. Каждая линия представляет положение одной из трех ортогональных плоскостей изображения, проходящих через объем, плоскость x-y (азимут и глубина), плоскость y-z (глубина и высота, обычно называемая C-плоскостью) и плоскость x-z (азимут и высота). Когда изменяют положение прямых линий, 2-мерные изображения соответствующих плоскостей сечения формируются по вокселям набора данных, пересекаемого плоскостями сечения. В патенте США 6572547 (Miller с соавторами) показано использование упомянутых плоскостей сечения для визуализации наконечника катетера по трем разным ракурсам визуализации.

Дополнительное ограничение трехмерной визуализации состоит в том, что наборы данных 3-мерных изображений форматируются различным образом разными поставщиками систем ультразвуковой визуализации, так как поставщики стремятся обеспечить обработку и хранение больших наборов (3-мерных) данных, характерных для трехмерной визуализации. С целью совмещения упомянутых различных фирменных подходов рабочая группа комитета по стандартам DICOM (формирования и передачи цифровых изображений в медицине) опубликовала в апреле 2009 г. приложение 43 к стандарту, специально предназначенное для стандарта DICOM по хранению 3-мерных ультразвуковых изображений. Однако исполнение данного стандарта для 3-мерных ультразвуковых изображений было не быстрым делом, и планы разных поставщиков по преобразованию систем визуализации, например систем PACS (систем архивации и передачи медицинских изображений), в новый 3-мерный стандарт, остаются, в основном, неизвестными. Соответственно, по-прежнему существует потребность в обеспечении данных 3-мерного изображения в стандартизированном формате, который допускает их легкий перенос и использование на других платформах для медицинских изображений, которые не исполняли стандарт DICOM для 3-мерных ультразвуковых изображений.

В соответствии с принципами настоящего изобретения предлагается ультразвуковая система, которая переформатирует данные 3-мерных изображений в виде, по меньшей мере, одной последовательности 2-мерных изображений в направлениях соответствующих плоскостей сечения, которую можно переносить на другие платформы для визуализации и воспроизводить и диагностировать как стандартизированную последовательность 2-мерных изображений в реальном времени. Пользовательский интерфейс обеспечивает выбор направления плоскости сечения, межплоскостного интервала и/или числа изображений в последовательности. Затем объем переформатируется в плоские изображения в выбранном(ых) направлении(ниях) плоскости(ей) сечения и сохраняется в виде, по меньшей мере, одной последовательности изображений, что дает возможность воспроизводить каждую последовательность на наиболее распространенных платформах для медицинской визуализации, предпочтительно, в виде последовательностей 2-мерных изображений в стандарте DICOM.

На чертежах:

Фигура 1 - изображение в виде блок-схемы ультразвуковой системы, сконструированной в соответствии с принципами настоящего изобретения.

Фигура 2 - изображение последовательности этапов получения набора 3-мерных данных и переформатирования данных в виде, по меньшей мере, одной последовательности плоских изображений в соответствии с настоящим изобретением.

Фигура 3 - изображение линий, проходящих через 3-мерное изображение, показывающих положение плоскостей сечения в соответствии с настоящим изобретением.

Фигура 4 - изображение порядка формирования трех последовательностей плоских изображений из набора данных объемного изображения в соответствии с настоящим изобретением.

На фигуре 1 показана блок-схема ультразвуковой системы, сконструированной в соответствии с принципами настоящего изобретения. Ультразвуковой датчик 10 с матричным преобразователем 12 излучает ультразвуковые волны в тело пациента и в ответ принимает эхо-сигналы из объемной области. Известно несколько методов ультразвукового сканирования объемной области тела. Один из методов заключается в перемещении ультразвукового датчика, содержащего одномерный матричный преобразователь, по коже в направлении, нормальном к плоскости изображения датчика. Соответственно, датчик будет получать последовательность, по существу, параллельных плоскостей изображений по мере того, как датчик перемещается, и данные изображений плоскостей изображений содержат наборы данных 3-мерных изображений. Данный ручной метод, названный ручным сканированием, описан в патенте США 5474073 (Schwartz с соавторами). Второй метод заключается в механическом колебании матричного преобразователя взад и вперед внутри камеры датчика. Соответственно, датчик будет получать такие же данные из последовательности, по существу, параллельных плоскостей изображений, как при ручном методе, но в данном случае механическое колебание матричного преобразователя может быть достаточно быстрым для обеспечения 3-мерных изображений в реальном времени. Третий метод заключается в использовании датчика с двухмерным матричным преобразователем, пучки которого можно сканировать электронным способом в трех измерениях посредством управления пучками с помощью фазированной решетки. 3-мерный датчик с двухмерной матрицей данного назначения описан в патенте США 5993390 (Savord с соавторами). В предпочтительном варианте данного третьего метода используют датчик без подвижных частей и электронное управление пучками можно осуществлять достаточно быстро даже для сканирования сердца, с визуализацией в реальном времени. Каждый из упомянутых методов сканирования способен обеспечивать набор данных 3-мерного изображения, пригодный для использования в связи с настоящим изобретением.

Эхосигналы, принятые отдельными преобразовательными элементами решетки 12, обрабатываются формирователем 14 пучка для формирования когерентных эхосигналов, относящихся к конкретным точкам тела. Эхосигналы обрабатываются процессором 16 сигналов. Обработка сигналов может содержать выделение гармонических составляющих эхосигналов, например, для гармонической визуализации и устранения помех. Обработанные сигналы организуются в изображения требуемого формата, например, трапециевидного сектора или куба, посредством процессора 18 изображений. Данные 3-мерного изображения организуются в собственных координатах x-y-z в объемной области и сохраняются в памяти 20 изображений. Данные 3-мерного изображения представляются в виде трехмерного изображения посредством блока 22 объемного рендеринга. Серии изображений, представленных в объеме, могут динамически отображаться с кинетическим параллаксом таким образом, что пользователь может поворачивать, переориентировать и перепозиционировать объем для разных ракурсов наблюдения, как поясняется в патенте США 6117080 (Schwartz). Изображения обрабатываются для отображения дисплейным процессором 24, который может накладывать графику на 3-мерное изображение, и изображение отображается на графическом дисплее 26.

3-мерное объемное изображение можно также рассматривать путем «получения слоев» объема и отображения отдельного слоя в виде 2-мерного изображения. Местоположение слоя в объеме выбирается пользователем посредством манипуляции элементом управления на пользовательском интерфейсе 28 управления. Элемент пользовательского управления будет выбирать отдельную 2-мерную плоскость в 3-мерном объеме, как описано выше, и блок 30 мультипланарного переформатирования выбирает планарные данные из набора 3-мерных данных, которые имеют оси координат в выбранной плоскости. 2-мерное изображение выбранной плоскости представляется на дисплее 26 либо отдельно, либо в сочетании с 3-мерным изображением. Как описано выше, пользовательский интерфейс управления может представлять пользователю три различно окрашенные линии или курсоры, каждый из которых может выбирать плоскость с соответствующей, взаимно ортогональной ориентацией. Затем пользователь может одновременно наблюдать три ортогональные плоскости, проходящие через 3-мерный объем, как поясняется, например, в патенте США 6572547 (Miller с соавторами).

В соответствии с принципами настоящего изобретения данные изображения 3-мерного объема организуются в виде последовательности изображений последовательных, параллельных плоскостей объема. Последовательность изображений может сохраняться в виде последовательности кадров в ультразвуковом мультикадровом изображении в стандарте DICOM, которое может сохраняться и воспроизводиться на большинстве рабочих станций для медицинской визуализации и в системах PACS в виде последовательности 2-мерных изображений, сохраненной в виде ультразвукового мультикадрового изображения в стандарте DICOM. Тем самым врач может просматривать данные изображения 3-мерного объема в виде последовательности плоскостей сечения, проходящих через объем. Врач может быстро воспроизводить последовательность изображений, создавая впечатление «прохода сквозь» объем. Или врач может ступенчато продвигаться по последовательности в замедленном темпе или фиксировать отдельное изображение в плоскости, которая делает сечение через изучаемую область для диагностики. Затем данные 3-мерного объема можно просматривать как 2-мерные изображения, которые для врача более удобны и привычны, чем 3-мерное изображение объема.

В исполнении, показанном на фигуре 1, пользователь управляет пользовательским интерфейсом управления для выбора ориентации плоскостей подлежащей(их) созданию последовательности (или последовательностей) 2-мерных изображений. Стандартные 2-мерные изображения имеют азимутальную (x) координату и координату глубины (y), и врач может, например, получать, по желанию, плоскости сечения, ориентированные в последовательности плоскостей x-y, каждую из плоскостей сечения с разной координатой z (высоты) в объеме. Данный выбор подается в блок 30 мультипланарного переформатирования, который выбирает последовательность плоскостей x-y изображений набора 3-мерных данных. Данная последовательность изображений плоскостей x-y сечения подается в блок 32 задания последовательности изображений, который обрабатывает изображения в виде последовательности 2-мерных изображений. Последовательность изображений может иметь фирменный (заказной) формат, используемый конкретной ультразвуковой системой, но в предпочтительном варианте 2-мерные изображения обрабатываются в соответствии со стандартом DICOM для двухмерных медицинских изображений. При форматировании в стандарте DICOM последовательность изображений можно воспроизводить и наблюдать на самых разных платформах для медицинской визуализации. Последовательность 2-мерных изображений сохраняется в памяти 34 Cineloop® в виде последовательности или «киноцикла» 2-мерных изображений. Последовательность изображений можно передавать в другие системы и платформы для визуализации через порты передачи данных изображений ультразвуковых систем. Последовательность изображений в соответствии с настоящим изобретением можно передавать в рабочую станцию для просмотра изображений в другом отделении больницы, например, по больничной сети передачи данных изображений.

В предпочтительном варианте осуществления настоящего изобретения пользователь может задавать и выбирать дополнительные параметры последовательности 2-мерных изображений 3-мерного объема. Как показано на фигуре 1, пользовательский интерфейс 28 управления использует одинаковые или отличающиеся элементы пользовательского управления для назначения отличающихся характеристик последовательности 2-мерных изображений, включая выбор числа изображений в последовательности и межплоскостной интервал плоскостей сечения последовательности. Элементы пользовательского управления могут также обеспечивать для пользователя возможность выбора отдельного субобъема 3-мерного объема для плоскостей сечения. Например, пользователь может выбрать точно центральную треть объема для последовательности 2-мерных изображений. В другом примере весь 3-мерный объем следует переформатировать в плоскости 2-мерных изображений в виде последовательности из 100 плоскостей изображений. Блок мультипланарного переформатирования получает данный выбор и распределяет 100 плоскостей сечения через равные интервалы по объему в выбранной ориентации. В другом примере пользователь выбирает 2-мм межплоскостной интервал, и блок мультипланарного переформатирования выполняет сечения плоскостей 2-мерных изображений с 2-мм интервалами по объему в выбранной ориентации.

На фигуре 2 представлен способ обеспечения и экспорта последовательности 2-мерных изображений 3-мерного объема в соответствии с настоящим изобретением. На этапе 40 врач сканирует объемную область тела для получения набора 3-мерных данных. На этапе 42 врач наблюдает представленное 3-мерное изображение и выбирает, по меньшей мере, одну ориентацию плоскостей для, по меньшей мере, одной последовательности изображений, в которой будут выполняться сечения объема посредством блока мультипланарного переформатирования. Врач может выбрать две последовательности, например одну последовательность с плоскостями сечения, имеющими координаты x-y, и другую последовательность с плоскостями сечения, имеющими координаты y-z. В созданном варианте осуществления выбор ориентации плоскостей для последовательности выполняется посредством выбора и просмотра плоскости изображения MPR (мультипланарной реконструкции). Затем, другие изображения последовательности будут форматироваться в плоскостях, параллельных выбранной плоскости. На этапе 44 врач выбирает число плоскостей изображения каждой последовательности. Например, врач может выбрать 50 плоскостей для последовательности плоскостей x-y и 20 плоскостей для последовательности плоскостей y-z. На этапе 46 врач выбирает интервал между плоскостями изображений. Например, врач может выбрать 1-мм интервал между плоскостями x-y и 2-мм интервал между плоскостями y-z. Если межплоскостной интервал этого этапа слишком велик для числа плоскостей, выбранного на этапе 44, то система предупредит пользователя о конфликте, чтобы пользователь мог выбрать один или другой параметр. Если межплоскостной интервал выбран слишком малым для полного объема, то система распределит выбранное число плоскостей с выбранным межплоскостным интервалом около центра объема, где пользователи чаще всего позиционируют исследуемую область. В качестве альтернативы пользователь может задавать субобласти объема, по которым должны быть распределены плоскости. В созданном варианте осуществления отсутствует необходимость исполнять этапы 44 и 46; ультразвуковая система автоматически обеспечивает плоскости данных изображения с одной стороны 3-мерного объема до другой его стороны и обеспечивает плоскости изображений с наименьшим межплоскостным интервалом, допускаемым ультразвуковой системой. На этапе 48 блок мультипланарного переформатирования и блок задания последовательности изображений обеспечивают заданную(ные) последовательность(ти) изображений. На этапе 50 последовательность(ти) изображений экспортируется(ются) в рабочую станцию для визуализации в виде ультразвукового мультикадрового изображения в стандарте DICOM для просмотра и диагностики.

На фигуре 3 представлено графическое изображение на экране дисплея 26, на котором показана сетка линий плоскостей сечения, которые показывают пользователю плоскости, которые будут переформатированы в последовательности 2-мерных изображений. С левой стороны экрана 60 дисплея находится ультразвуковое изображение 66, которое ориентировано в плоскости x-y. На данное изображение 66 наложена сетка 64 вертикальных линий, которые показывают серии сечений, проходящих через объем в направлении y-z (по высоте). Упомянутая сетка 64 показывает пользователю, что участок объема, охваченный упомянутыми тридцатью плоскостями сечения, будет переформатирован в последовательность из тридцати 2-мерных изображений в координатах y-z. С правой стороны дисплея находится второе изображение 68, пересекающее объем в координатах x-y, на которое наложена сетка 62 горизонтальных линий. Сетка 62 показывает пользователю, что субобласть объема, продолжающаяся почти от верха изображения вниз на, приблизительно, две трети полной глубины изображения, будет переформатирована в последовательность из тридцати изображений C-плоскостей, то есть изображений, которые ориентированы, каждое, в координатах x-z и расположены на последовательных глубинах (с приращениями в направлении y) объема. Сетка 62 подкреплена графической рамкой 60, которая сверху показывает с помощью небольших контрольных меток расположение плоскостей сечения в координатах y-z, которые установлены на левостороннем изображении 66. Следовательно, пользователь может сразу видеть относительные местоположения двух наборов ортогональных линий сеток и плоскостей сечения.

Пользователю предоставляется также возможность поворачивать или наклонять сетки 62, 64 и тем самым создавать линии плоскостей сечения, которые наклонены или повернуты по отношению к номинальной ориентации точно горизонтальных или вертикальных плоскостей сечения.

На фигуре 4 представлены три последовательности 74, 84, 94 изображений, которые сформированы посредством исполнения настоящего изобретения. Экран 70 дисплея с левой стороны фигуры 4 показывает ультразвуковое изображение 72, полученное сечением объема в координатах x-y, и последовательность 74 изображений 2-мерных изображений, которые находятся в последовательных плоскостях x-y, проходящих через объем и набор 3-мерных данных. В центре фигуры 4 находится экран 80 дисплея, представляющий изображение 84 в плоскости y-z, и ниже данного изображения находится последовательность 84 изображений в последовательных плоскостях y-z сечения, проходящих через объем и набор 3-мерных данных. С правой стороны фигуры 4 находится экран 90 дисплея, представляющий C-плоскость 92 (в координатах y-z), и ниже него находится последовательность 94 изображений, полученных сечением по последовательным плоскостям x-z объема и набора 3-мерных данных. Три последовательности изображений представляют изображения, полученные сечением по взаимно ортогональным плоскостям объема и набора 3-мерных данных, при этом одна последовательность продолжается в направлении z, вторая последовательность продолжается в направлении x и третья последовательность продолжается в направлении y. Пользователь может экспортировать одну, две или все три последовательности изображений в виде изображений в стандарте DICOM в рабочую станцию для работы с изображениями для дальнейшего анализа и диагностики.

Поскольку каждая плоскость сечения проходит через полный набор данных 3-мерного изображения, то каждое 2-мерное изображение в плоскости сечения, соответственно, пересекает и содержит все данные изображения, собранные для конкретного переформатированного изображения. В предпочтительном варианте осуществления 2-мерные изображения находятся в прямоугольных координатах и каждая последовательность изображений состоит из последовательных плоскостей сечения в соответствующем ортогональном направлении прямоугольных координат. Соответственно, 2-мерные изображения пригодны для измерения и количественного анализа в такой же степени, как стандартное 2-мерное изображение, полученное обычными средствами с помощью одномерного матричного преобразователя.


ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ
ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ
ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ
ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ
ДАННЫЕ УЛЬТРАЗВУКОВОГО ОБЪЕМНОГО ИЗОБРАЖЕНИЯ, ПЕРЕФОРМАТИРОВАННЫЕ В ВИДЕ ПОСЛЕДОВАТЕЛЬНОСТИ ПЛОСКИХ ИЗОБРАЖЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 251.
10.01.2015
№216.013.1a5d

Система и способ контроля легочной гиперемии

Группа изобретений относится к медицинской технике. Система для контроля легочной гиперемии у субъекта содержит устройство поддержания давления, выполненное с возможностью создания потока дыхательного газа под давлением для его подачи в дыхательные пути субъекта в зависимости от алгоритма...
Тип: Изобретение
Номер охранного документа: 0002538177
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a9a

Терапия под управлением магнитно-резонансной визуализации

Группа изобретений относится к медицине, а именно к терапевтической системе и способу мониторинга теплового воздействия на ткань организма. Система содержит блок MR-визуализации, выполненный с возможностью сбора MR-сигналов из тела пациента, расположенного в зоне обследования. Также система...
Тип: Изобретение
Номер охранного документа: 0002538238
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a9c

Устройство и способ управления смешиванием газов

Группа изобретений относится к медицинской технике. Вентилятор для подачи газа под давлением в дыхательные пути пациента содержит первую магистраль для подачи первого газа и вторую магистраль для подачи второго газа, причем второй газ смешан с первым газом для образования смешанного газа,...
Тип: Изобретение
Номер охранного документа: 0002538240
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ac7

Аутентификация устройства и пользователя

Изобретение относится к способу и системе для аутентификации воспринимающего устройства и пользователя. Техническим результатом является повышение надежности аутентификации воспринимающего устройства и пользователя, удостоверяющей, что данные, происходящие из устройства, происходят от...
Тип: Изобретение
Номер охранного документа: 0002538283
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1afb

Объединение данных 3d изображения и графических данных

Изобретение относится к средствам визуализации трехмерного изображения. Техническим результатом является создание свободного пространства в трехмерном изображении, обеспечивающего отображение дополнительных графических данных, не загораживающих трехмерные эффекты при отображении. В способе...
Тип: Изобретение
Номер охранного документа: 0002538335
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d3e

Способ и система для оценивания объектов

Изобретение относится к оцениванию объектов для рекомендательных систем, чтобы дать системе возможность изучить предпочтения пользователя. Технический результат заключается в улучшении непротиворечивости пользователя при оценивании объектов. Для этого поддерживается запись множества ранее...
Тип: Изобретение
Номер охранного документа: 0002538914
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d9e

Устройство, способ и компьютерная программа для определения характеристик сердца

Группа изобретений относится к медицине. Устройство для определения характеристик сердца содержит катетер и первый блок определения характеристик для определения повторяющегося локального сокращения сердца в месте считывания из считанного сигнала сокращения в качестве первой характеристики...
Тип: Изобретение
Номер охранного документа: 0002539010
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.25c9

Визуализация перфузии

Изобретение относится к визуализации перфузии. Техническим результатом является уменьшение взаимодействия с пользователем, а также увеличение скорости обработки данных визуализации перфузии. Способ содержит этапы, на которых: исполняют, посредством анализатора данных, исполняемые компьютером...
Тип: Изобретение
Номер охранного документа: 0002541126
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c1

Рч передающая и/или приминающая антенна для гибридной системы магнитно-резонансной томографии/ высокоинтенсивного сфокусированного ультразвука

Использование: для использования в гибридной системе магнитно-резонансной томографии (МРТ) или (МР сканере), который содержит систему МРТ и другую систему визуализации, например, в виде системы высокоинтенсивного сфокусированного ультразвука (HIFU). Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002541374
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28be

Автоматизированное оконтуривание анатомии для планирования терапии с управлением по изображениям

Изобретение относится к компьютерным системам диагностической визуализации. Техническим результатом является повышение точности распознания анатомических особенностей на изображении за счет автоматизированного оконтуривания этих особенностей. Предложена система оконтуривания анатомических...
Тип: Изобретение
Номер охранного документа: 0002541887
Дата охранного документа: 20.02.2015
Показаны записи 121-130 из 1 329.
10.09.2013
№216.012.6675

Устройство блендера с узлом ножа

Настоящее изобретение относится к устройству блендера. Задачей изобретения является создание устройства блендера типа, которое позволяет эффективно смешивать вязкие смеси. Устройство блендера включает в себя основание и емкость. Узел ножа и узел подавателя размещены в емкости рядом с...
Тип: Изобретение
Номер охранного документа: 0002491876
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.67e4

Способ анализа онкологических заболеваний молочной железы

Изобретение относится к области генной инженерии, конкретно к способу анализа онкологических заболеваний молочной железы, и может быть использовано в медицине. Способ включает определение статуса геномного метилирования динуклеотидов CpG в каждой последовательности из группы последовательностей...
Тип: Изобретение
Номер охранного документа: 0002492243
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68b3

Система биодатчика на основе нарушенного полного внутреннего отражения (нпво) и способ обнаружения сигнала датчика, основанного на нпво

Изобретение относится к системе биодатчика на основе нарушенного полного внутреннего отражения (НПВО). Система с НПВО содержит два источника света, средство включения и выключения первого и второго источников света в противофазе, объем образца с примыкающей чувствительной поверхностью, детектор...
Тип: Изобретение
Номер охранного документа: 0002492450
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.68e1

Световое детекторное устройство с выбором угла света

Световое детекторное устройство с выбором угла света содержит селекторный блок и детекторный блок, расположенный, чтобы принимать свет, выбранный упомянутым селекторным блоком. Селекторный блок содержит непрозрачное тело, имеющее первую и вторую поверхности, параллельные одна другой и...
Тип: Изобретение
Номер охранного документа: 0002492496
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6a08

Устройство для приготовления пищи

Устройство (1) для приготовления пищи, например детского питания, содержит емкость (3) для приема пищи, подлежащей приготовлению, смесительный узел, содержащий смесительный элемент (10) для смешивания пищи, и нагревательное устройство, выполненное с возможностью нагревания пищи. Первый конец...
Тип: Изобретение
Номер охранного документа: 0002492795
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6a0b

Всасывающее устройство и автономный пылесос

Настоящее изобретение относится к всасывающему устройству и к пылесосу. Всасывающее устройство содержит приводную систему для приведения в действие всасывающего устройства на обрабатываемой поверхности; раму, поддерживающую приводную систему; сопло для удаления частиц с обрабатываемой...
Тип: Изобретение
Номер охранного документа: 0002492798
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6a15

Устройство для измерения и прогнозирования респираторной стабильности пациентов

Группа изобретений относится к медицине. Устройство прогнозирования респираторной стабильности пациента включает в себя запоминающее устройство данных пациента, которое хранит данные пациента, и анализатор, связанный с запоминающим устройством, рассчитывает показатель респираторной стабильности...
Тип: Изобретение
Номер охранного документа: 0002492808
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6a3e

Система и способ для автоматической кардиопульмональной реанимации (cpr)

Изобретение относится к медицине. Система содержит устройство для приложения силы для приложения сил компрессии к грудной клетке пациента; измерительное устройство для измерения смещения грудной клетки, соответствующего каждой из сил компрессии; и управляющее устройство для определения свойств...
Тип: Изобретение
Номер охранного документа: 0002492849
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6a57

Молокоотсос для сцеживания молока из груди

Изобретение относится к медицине. Молокоотсос для сцеживания молока из груди содержит грудную чашу для приема груди, систему отсасывания с соединением по текучей среде по меньшей мере с одной грудной чашей для приложения отрицательного давления к груди и блок обнаружения, содержащий датчик...
Тип: Изобретение
Номер охранного документа: 0002492874
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d12

Детектор излучений и способ изготовления детектора излучений

Изобретение относится к детектору излучений и способу изготовления детектора излучений. Детектор излучений (10), содержащий массив пикселей (1), в котором каждый пиксель (1) содержит конверсионный слой из полупроводникового материала (4) для преобразования падающего излучения в электрические...
Тип: Изобретение
Номер охранного документа: 0002493573
Дата охранного документа: 20.09.2013
+ добавить свой РИД