×
20.05.2016
216.015.3e15

Результат интеллектуальной деятельности: ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ КОНТРОЛЯ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Использование: для неразрушающего контроля изделий из ферромагнитных материалов. Сущность изобретения заключается в том, что электромагнитно-акустический преобразователь для контроля изделий из ферромагнитного материала содержит каркас из немагнитного материала, в котором закреплены узел подмагничивания и выполненные в виде последовательно разнесенных в пространстве решеток излучатель и приемник, при этом приемник размещен на обращенном к изделию полюсе постоянного магнита или электромагнита узла намагничивания, а излучатель размещен на держателе, закрепленном в корпусе, при этом шаг между синфазными проводниками приемника пропорционален длине возбуждаемой волны, а шаг между синфазными проводниками излучателя пропорционален удвоенной длине возбуждаемой волны. Во втором варианте исполнения приемник размещен между двумя обращенными к изделию магнитными полюсами различной магнитной полярности узла намагничивания. Технический результат: повышение достоверности контроля изделий из ферромагнитных материалов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области ультразвукового неразрушающего контроля изделий из ферромагнитного материала и может быть использовано в машиностроении, нефтегазовой промышленности, а также в других отраслях промышленности для контроля качества продукции как из самого металла, так и сварных соединений.

Задачей заявляемого изобретения является увеличение достоверности контроля с одновременным упрощением конструкции ЭМА преобразователя.

В настоящее время известны электромагнитно-акустические преобразователи для неразрушающего контроля изделий из ферромагнитных материалов.

Известен ЭМА преобразователь [1], являющийся аналогом заявляемого изобретения, содержащий каркас, в котором установлен с возможностью вращения магнитопровод, выполненный в виде вала с намагничивающим элементом и колесной парой из ферромагнитного материала. Чувствительный элемент, установленный между колесами над поверхностью изделия, представляет собой плоскую катушку в виде решетки, шаг между системой синфазных проводников которой пропорционален длине волны.

Такой ЭМА преобразователь не обеспечивает необходимой достоверности контроля, поскольку, во-первых, точечный контакт магнитопровода с изделием, не обеспечивая равномерного промагничивания участка изделия под чувствительным элементом, ухудшает чувствительность преобразователя, а возможные изменения рабочего зазора приводят к резкому изменению эффективности возбуждения и приема звуковых волн; во-вторых, использование одного чувствительного элемента на излучение и прием в виде решетки с определенными параметрами, связанными с длиной волны, не только ухудшает условия выделения полезных сигналов на фоне электрических помех, связанных с электрическим воздействием (по эфиру, по соединительным кабелям и т.д.) излучающего устройства на приемное устройство, но и ухудшает возможности согласования как излучателя с выходом генератора, так и приемника с входом усилителя.

Известен ЭМА преобразователь [2], предназначенный для ультразвукового контроля металлических изделий произвольной толщины. ЭМА преобразователь состоит из каркаса с закрепленными в нем узлом подмагничивания и излучателя-приемника. Узел подмагничивания представляет собой П-образный магнит, полюса которого обращены к поверхности контролируемого металлического изделия. Излучатель-приемник представляет собой решетку, состоящую из нескольких расположенных в одной плоскости параллельно друг другу проводников. Решетка расположена между полюсами магнита, параллельно поверхности контролируемого изделия. Для формирования и приема звуковой волны расстояние между системой синфазных проводников выбирают равным длине возбуждаемой волны.

Недостатком этого аналога является низкая достоверность контроля - использование одного чувствительного элемента на излучение и прием в виде решетки с определенными параметрами, связанными с длиной волны, не только ухудшает условия выделения полезных сигналов на фоне электрических помех, связанных с электрическим воздействием (по эфиру, по соединительным кабелям и т.д.) излучающего устройства на приемное устройство, ухудшает возможности согласования излучателя с выходом генератора и приемника с входом усилителя, но и ухудшает эффективность возбуждения и приема волн за счет одновременного изменения зазора при излучении и приеме.

Наиболее близким по технической сущности к заявляемому является выбранный в качестве прототипа ЭМА преобразователь [3] для ультразвукового контроля ферромагнитных изделий. ЭМА преобразователь содержит каркас из немагнитного материала, в котором закреплены узел подмагничивания, излучатель и приемник. Узел подмагничивания представляет собой Ш-образный магнитопровод с установленной на среднем полюсе катушкой подмагничевания, полюса которого обращены в сторону поверхности контролируемого ферромагнитного изделия. Излучатель и приемник представляют собой решетки, состоящие из нескольких расположенных в одной плоскости параллельно друг другу проводников. Для формирования и приема звуковой волны расстояние между системой синфазных проводников решеток выбирают равным длине возбуждаемой волны. Каждая из двух решеток расположена в одном из межполюсных пространств, образованных Ш-образным магнитопроводом, параллельно поверхности контролируемого изделия.

К недостаткам прототипа, снижающим достоверность контроля, можно отнести существующее влияние степени подмагничивания не только на эффективность приема, но и на эффективность возбуждения ультразвуковых волн, а также ухудшение условий выделения полезных сигналов на фоне электрических помех, связанных с выполнением излучателя и приемника с одинаковым для обеих решеток шагом (расстоянием) между синфазными проводниками.

Задача - повысить достоверность контроля изделий из ферромагнитных материалов за счет исключения влияния подмагничивания на эффективность возбуждения ультразвуковых волн, а также за счет улучшения условий для повышения соотношения сигнал-шум.

Технический результат - исключение влияния подмагничивания на эффективность возбуждения ультразвуковых волн, повышение соотношения сигнал-шум.

Технический результат достигается тем, что в ЭМА преобразователе, содержащем каркас из немагнитного материала, закреплены узел подмагничивания, излучатель и приемник. Излучатель и приемник выполнены в виде последовательно разнесенных в пространстве решеток. В первом варианте исполнения приемник размещен на обращенном к изделию полюсе постоянного магнита или электромагнита узла намагничивания, при этом шаг между синфазными проводниками приемника пропорционален длине возбуждаемой волны. Во втором варианте исполнения приемник размещен между двумя обращенными к изделию магнитными полюсами различной магнитной полярности узла намагничивания. Излучатель как в первом, так и во втором случае размещен на держателе, закрепленном в корпусе, защищенном от полей намагничивания, а шаг между синфазными проводниками излучателя пропорционален удвоенной длине возбуждаемой волны.

На фиг. 1 и фиг. 2 показаны различные конфигурации ЭМА преобразователя:

1 - Каркас

2 - Магнит

3 - Приемник

4 - Излучатель

5 - Испытуемое изделие

6 - Поверхность контроля

7 - Свободные ультразвуковые волны

Предложенный преобразователь обеспечивает возможность возбуждения ультразвуковых волн при установке излучателя относительно поверхности контроля ферромагнитного изделия без подмагничивания и так, чтобы он не подвергался никакому износу вследствие истирания, которое происходило бы в результате прижима излучателя при наличии подмагничивания к технической поверхности обследуемого изделия.

В отличие от известных на сегодняшний день электромагнитно-акустических ультразвуковых преобразователей, у которых излучатель установлен непосредственно на поверхности магнитного полюса либо между полюсами магнита, обращенных в сторону испытуемого объекта, у предлагаемого ЭМА преобразователя в соответствии с изобретением между излучателем и обследуемым ферромагнитным изделием не действуют никакие внешние магнитные поля.

В зависимости от варианта осуществления изобретения приемник можно жестко соединить с узлом подмагничивания, а полученный конструктив жестко связать с излучателем с помощью соответствующего держателя. Такого рода жесткая пространственная связь между приемником и излучателем обеспечивает единообразное и простое использование электромагнитно-акустического преобразователя, выполненного в соответствии с изобретением. В тоже время независимое использование излучателя и приемника может открыть дополнительные возможности применения, например, в тех случаях, когда обследуются объекты большой площади.

Для возбуждения упругих волн требуемой длины волны в изделии необходимо выполнить условие: расстояние между синфазными проводниками излучателя должно быть пропорциональным удвоенной длине возбуждаемой волны. Это позволяет при фиксированной частоте генератора возбуждать в ферромагнитном изделии высокочастотные ультразвуковые волны на удвоенной частоте.

Для приема волн (создание ЭДС в приемной катушке) в зависимости от направления приложенного поля используется:

• либо электродинамический эффект - возбуждение полей вихревых токов за счет взаимодействия механических колебаний участка изделия с приложенным постоянным магнитным полем (нормальным, тангенциальным),

• либо эффект магнитоупругости - изменение магнитной индукции в предварительно намагниченном участке изделия за счет механических колебаний (деформации) участка.

Также для приема направленных волн определенной длины в изделии необходимо выполнить условие: расстояние между синфазными проводниками решетки (катушки) приемника должно быть пропорциональным длине возбуждаемой волны.

На фиг. 1 и фиг. 2 показаны различные конфигурации ЭМА преобразователя, выполненного из закрепленного в каркасе 1 постоянного магнита 2 с полюсом, обращенным к изделию 5, на котором закреплен приемник 3, выполненный в виде решетки. Постоянный магнит 2 на участке между магнитным полюсом и изделием 5 создает внутри испытуемого изделия 5 нормальное магнитное поле, которое в случае постоянного магнита 2 является постоянным во времени. Можно также использовать вместо постоянного магнита 2, изображенного на фиг.1, электромагнит той же или аналогичной конфигурации, который способен поддерживать в испытуемом изделии 5 нормальное магнитное поле, изменяющееся во времени. В этом случае необходимо следить за тем, чтобы частота переменного тока, необходимая для формирования нормального магнитного поля, была гораздо ниже частоты переменного тока, который возникает в приемнике 3 вследствие прихода ультразвуковой волны к участку под приемником 3. В дальнейшем для простоты предполагается, что магнит 2, как указано выше, выполнен как постоянный магнит.

При сформированном нормальном магнитном поле ЭДС на приемнике 3 возникает за счет электроиндуктивного механизма.

Можно также использовать вместо постоянного магнита 2, изображенного на фиг.1, магнит 2, изображенный на фиг. 2, с двумя магнитными полюсами различной магнитной полярности, обращенными в сторону контролируемой поверхности 6 , между которыми закреплен приемник 3. Постоянный магнит 2 на участке между магнитными полюсами и изделием создает внутри испытуемого изделия 5 тангенциальное магнитное поле, которое в случае постоянного магнита 2 является постоянным во времени.

При сформированном тангенциальном магнитном поле ЭДС на приемнике 3 возникает за счет магнитоупругого эффекта.

При подаче переменного тока в излучатель 4 из-за магнитострикционного эффекта участок испытуемого изделия 5 деформируется с частотой, равной удвоенной частоте переменного тока генератора (не показан), а за счет конструкции излучателя 4 в виде решетки формируются свободные ультразвуковые волны 7, распространяющиеся параллельно поверхности контроля 6 и воспринимаемые приемником 3.

Путем измерения амплитуды и времени прохождения ультразвуковых волн, поступающих на приемник 3, в соответствии с принципом действия электромагнитно-акустического преобразователя могут быть проконтролированы сплошность изделия 5, скорость распространения волн в изделии 5.

Источники информации

1. Патент РФ № 2390014, G01N29/04. Электромагнитно-акустический преобразователь. Опубликован 20.05.2010. Бюл. № 14.

2. Буденков Б.А., Буденков Г.А. и др. Бесконтактный ввод и прием ультразвука. - Дефектоскопия, 1969, №1, с.121-123.

3. Глухов Н.А., Колмогоров В.Н. Определение оптимальных параметров электромагнитно-акустических преобразователей для контроля ферромагнитных листов. - Дефектоскопия, 1973, №1, с.74-81.


ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ КОНТРОЛЯ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ
ЭЛЕКТРОМАГНИТНО-АКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ КОНТРОЛЯ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.02.2014
№216.012.a347

Способ оценки поврежденности материала конструкций

Использование: для оценки поврежденности материала конструкций. Сущность: заключается в том, что оценка поврежденности материала (на стадии накопления рассеянных микроповреждений) эксплуатируемых элементов основана на определении критерия степени поврежденности металла элементов и определении...
Тип: Изобретение
Номер охранного документа: 0002507514
Дата охранного документа: 20.02.2014
20.10.2015
№216.013.856e

Композиция для повышения эффективности низкотемпературной депарафинизации масляных фракций

Изобретение относится к нефтеперерабатывающей промышленности, а именно к процессу низкотемпературной растворной депарафинизации масляных фракций. Полимерная присадка для процесса депарафинизации масляных фракций содержит активный компонент и растворитель, в качестве активного компонента...
Тип: Изобретение
Номер охранного документа: 0002565761
Дата охранного документа: 20.10.2015
10.03.2016
№216.014.becb

Способ построения сетей передачи данных с повышенным уровнем защиты от ddоs-атак

Изобретение относится к организации работы публичных компьютерных сетей, обеспечивающих взаимодействие терминального устройства со стороны клиента и сервера (модель клиент-сервер) с повышенной устойчивостью к сетевым атакам DDoS. Технический результат - снижение влияния атакующих сетей на...
Тип: Изобретение
Номер охранного документа: 0002576488
Дата охранного документа: 10.03.2016
20.05.2016
№216.015.3f27

Способ определения расстояния до места повреждения на линии электропередачи

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения в трехфазной линии электропередачи (ЛЭП) высокого и сверхвысокого напряжения. Технический результат: повышение чувствительности и точности определения места повреждения...
Тип: Изобретение
Номер охранного документа: 0002584266
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.4008

Способ адаптации дистанционной защиты и определителя места повреждения линии электропередачи с использованием ее модели

Изобретение относится к электротехнике, а именно к релейной защите и автоматике линий электропередачи, и может быть использовано при создании устройств защиты и автоматики, требующих высокой степени адаптации характеристик срабатывания к режимам защищаемого объекта. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002584268
Дата охранного документа: 20.05.2016
Показаны записи 11-11 из 11.
16.06.2023
№223.018.7cb3

Способ упрочняющей обработки мартенситно-стареющей стали

Предложенное изобретение относится к способу упрочняющей обработки деталей или изделий из мартенситно-стареющей стали 03Н18К9М5Т. Осуществляют закалку деталей или изделий при температуре 1200±10°C, после которой проводят выдержку в течение 1 часа, охлаждение в воде, трехкратную закалку при...
Тип: Изобретение
Номер охранного документа: 0002740294
Дата охранного документа: 12.01.2021
+ добавить свой РИД