×
10.05.2016
216.015.3d40

СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002583954
Дата охранного документа
10.05.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА) выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время. По полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точек местоположений КА на моменты выполнения снимков. По варианту 2 - по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. 2 н.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к метеорологии и способам для определения физических параметров атмосферы, а также может быть использовано при интерпретации результатов дистанционного зондирования Земли из космоса.

Известен способ измерения высоты нижней границы облачности посредством измерителя (авторское свидетельство СССР №598390, МПК G01C 3/06, G01S 9/62, на изобретение «Измеритель высоты нижней границы облаков»), заключающийся в наблюдении пятна света, образованного на основании облака направленным вертикально вверх лучом прожектора, причем прожектор и фотоприемник разнесены на известное расстояние, а их оптические оси расположены в одной вертикальной плоскости. Недостатками этого способа являются малый ресурс работы источника световых импульсов измерителя, невысокая точность получаемых данных и невозможность проведения измерений в условиях солнечной засветки и несплошной облачности.

Известны также светолокационные способы измерения высоты нижней границы облачности, по которым в измерителях в качестве источника световых импульсов используются твердотельные лазеры (патент РФ №2136016, МПК G01S 17/95, G01W 1/00, на изобретение «Светолокационный измеритель высоты нижней границы облаков»; каталог фирмы Vaisala, Финляндия, Ceilometr CL31). Недостатками этих способов являются ограниченный ресурс работы твердотельного лазера, высокая стоимость его изготовления и эксплуатации, значительные габариты и потребляемая мощность измерителей, наличие активного излучателя.

Известен способ определения высоты нижней границы облачности (патент РФ №2377612 от 01.04.2008, МПК G01W 1/02, - прототип), по которому получают два разномасштабных изображения выбранного в качестве объекта измерения фрагмента нижней границы облачности, определяют размеры этих изображений, рассчитывают высоту нижней границы облачности, при этом измерения производят одновременно посредством двух идентичных оптико-электронных приборов, которые располагают так, чтобы их вертикальные линии визирования совпадали, а передние главные плоскости оптических систем были совмещены, при этом оптические системы оптико-электронных приборов имеют отличные друг от друга фокусные расстояния, а высоту нижней границы облачности определяют по предложенному соотношению.

В способе-прототипе определяют расстояние до выбранного в качестве объекта измерения фрагмента нижней границы облачности. Недостатком способа-прототипа является то, что для определения высоты облачного покрова над различными точками земной поверхности необходимо в данных точках стационарно размещать и ориентировать упомянутые оптико-электронные приборы. При этом требуется или заранее разместить оптико-электронные приборы во всех точках земной поверхности, над которыми может производиться определение высоты облачного покрова, или иметь возможность оперативно перемещать оптико-электронные приборы в данные точки. Данные требования существенно ограничивают или делают практически невозможным оперативное определение высоты облачного покрова над различными, в общем случае произвольными точками земной поверхности.

Задачей, на решение которой направлено настоящее изобретение, является оперативное определение высоты облачного покрова над различными точками земной поверхности.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении оперативного определения высоты краевой точки видимого с космического аппарата (КА) облачного покрова.

Технический результат достигается тем, что в способе определения высоты облачности по варианту 1, включающем формирование изображений выбранного в качестве объекта измерения фрагмента облачности и определение высоты облачности по измеренным параметрам, дополнительно выполняют навигационные измерения орбиты космического аппарата и производят съемку с космического аппарата выбранной краевой точки видимого с космического аппарата на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время, по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова, по навигационным измерениям определяют координаты точек местоположений космического аппарата на моменты выполнения снимков и высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от линий, одна из которых проходит через точку местоположения космического аппарата на момент выполнения одного снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по данному снимку, а другая из которых проходит через точку местоположения космического аппарата на момент выполнения другого снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по данному снимку.

Кроме того, технический результат достигается тем, что в способе определения высоты облачности по варианту 2, включающем формирование изображений выбранного в качестве объекта измерения фрагмента облачности и определение высоты облачности по измеренным параметрам, дополнительно выполняют навигационные измерения орбит двух космических аппаратов и производят съемку с космических аппаратов выбранной краевой точки видимого с космических аппаратов на фоне земной поверхности облачного покрова при расположении данной краевой точки облачного покрова вне линии, соединяющей местоположения космических аппаратов, по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова, по выполненным навигационным измерениям определяют координаты точек местоположений космических аппаратов на момент выполнения съемки и высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от линий, одна из которых проходит через точку местоположения одного космического аппарата на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по снимку с данного космического аппарата, а другая из которых проходит через точку местоположения другого космического аппарата на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по снимку с данного космического аппарата.

Изобретение поясняется фиг. 1 и 2, на которых представлены схемы, поясняющие расчет упомянутого расстояния для вариантов 1 и 2 предлагаемого способа, соответственно, и введены следующие обозначения:

1 - элемент облачного покрова;

2 - участки земной поверхности, запечатленные на снимках;

3 - орбита КА;

О - центр Земли;

C - выбранная краевая точка облачного покрова;

H - высота выбранной краевой точки облачного покрова над земной поверхностью;

G - радиус Земли в направлении ОС;

B1, B2 - положения КА в момент выполнения, соответственно, первого и второго снимков;

A1, A2 - точки земной поверхности, лежащие на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения, соответственно, первого и второго снимков;

D1, D2 - положения, соответственно, первого и второго КА в момент выполнения съемки;

E1, E2 - точки земной поверхности, лежащие на линии визирования выбранной краевой точки облачного покрова с, соответственно, первого и второго КА в момент выполнения съемки.

В предлагаемом способе формируют изображение выбранного в качестве объекта измерения фрагмента облачности и определяют высоту облачности по измеренным параметрам. В качестве изображения используют фотоизображение, полученное путем съемки с КА. В качестве объекта измерения выбирают краевую точку видимого с КА на фоне земной поверхности облачного покрова.

В способе по варианту 1 выполняют навигационные измерения орбиты КА. Производят съемку с КА выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время.

Осуществляют координатную привязку полученных снимков к карте земной поверхности. Координатная привязка заключается в определении географических координат участков земной поверхности, запечатленных на полученных снимках. Координатная привязка снимков осуществляется, например, путем идентификации присутствующих на снимках характерных географических образований с установкой соответствия точек снимка географическим координатам, отраженным в картографических и геоинформационных системах. Используя полученные на снимках изображения и результаты выполненной координатной привязки, определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова в моменты выполнения первого и второго снимков.

По навигационным измерениям орбиты КА определяют координаты точек местоположений центра масс КА на моменты выполнения снимков.

Высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от двух линий:

- линии, проходящей через точку местоположения КА на момент выполнения первого снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по первому снимку, и

- линии, проходящей через точку местоположения космического аппарата на момент выполнения второго снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по второму снимку.

Задаваемое время между моментами выполнения снимков выбирают исходя из требования к точности определения высоты облачности. Точность определения высоты облачности по варианту 1 предлагаемого способа определяется углом между линией визирования выбранной краевой точки облачного покрова в момент выполнения первого снимка и линией визирования выбранной краевой точки облачного покрова в момент выполнения второго снимка и связанным с данным углом расстоянием между точками земной поверхности, лежащими на линиях визирования выбранной краевой точки облачного покрова в моменты выполнения снимков. Данный угол и расстояние могут быть взаимосвязаны со временем между моментами выполнения снимков. Например, для определения высоты облачности с заданной точностью снимаемую краевую точку облачного покрова и время между моментами выполнения снимков выбирают таким образом, чтобы обеспечивалось наличие необходимого расстояния между точкой А1 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения первого снимка, и точкой A2 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения второго снимка. Чем больше расстояние A1A2, тем точнее может быть вычислено значение высоты облачности. Считаем, что возможное перемещение облачного покрова относительно земной поверхности за время между моментами выполнения снимков отсутствует или пренебрежительно мало.

Как отмечалось, условие выполнения снимков в моменты, отстоящие один от другого на задаваемое время, соответствует условию на значение угла между линиями визирования выбранной краевой точки облачного покрова в моменты выполнения снимков. С учетом этого, требуемая точность определения высоты облачности может быть обеспечена выполнением следующих действий: измеряют орбитальные координаты линии визирования выбранной краевой точки облачного покрова, фиксируют (запоминают) измеренные орбитальные координаты данной линии визирования на момент выполнения первого снимка, по зафиксированным и текущим измеренным орбитальным координатам данной линии визирования определяют угол между линией визирования выбранной краевой точки облачного покрова в момент выполнения первого снимка и линией визирования выбранной краевой точки облачного покрова в текущий момент времени и второй снимок выполняют в момент, когда значение данного угла будет находиться в задаваемом диапазоне значений, соответствующем требуемой точности определения высоты облачности.

В способе по варианту 2 выполняют навигационные измерения орбит двух КА. Производят съемку с КА выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова при расположении данной краевой точки облачного покрова вне линии, соединяющей местоположения КА.

Осуществляют координатную привязку полученных снимков к карте земной поверхности. Используя полученные на снимках изображения и результаты выполненной координатной привязки, определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова с одного и другого КА.

По выполненным навигационным измерениям определяют координаты точек местоположений центров масс первого и второго КА на момент выполнения съемки.

Высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от двух линий:

- линии, проходящей через точку местоположения первого КА на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова с первого КА и координаты которой определены по снимку с первого КА, и

- линии, проходящей через точку местоположения второго КА на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова со второго КА и координаты которой определены по снимку со второго КА.

При расположении выбранной краевой точки облачного покрова на линии, соединяющей местоположения КА, линии визирования выбранной краевой точки облачного покрова с первого и второго КА совпадают и точка их пересечения не определена.

Точность определения высоты облачности по варианту 2 предлагаемого способа определяется углом между линиями визирования выбранной краевой точки облачного покрова с первого и второго КА и связанным с данным углом расстоянием между точками земной поверхности, лежащими на линиях визирования выбранной краевой точки облачного покрова с первого и второго КА. Например, для определения высоты облачности с заданной точностью снимаемую краевую точку облачного покрова и момент выполнения снимков выбирают таким образом, чтобы в момент выполнения снимков обеспечивалось наличие необходимого расстояния между точкой E1 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с одного КА, и точкой E2 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с другого КА. Чем больше расстояние E1E2, тем точнее может быть вычислено значение высоты облачности.

В способе по обоим вариантам расстояние от земной поверхности до точки, минимально удаленной от двух описанных линий, определяется вдоль общего перпендикуляра данных линий (вдоль отрезка, перпендикулярного данным линиям), и упомянутая точка минимального удаления рассчитывается как середина общего перпендикуляра. Описанные линии и общий перпендикуляр к ним полностью определяются вышеопределенными координатами КА и упомянутых точек земной поверхности. Например, в частном случае, когда описанные линии пересекаются (в этом случае, представленном на фиг. 1 и 2, упомянутая точка минимального удаления лежит на пересечении данных линий и минимальное удаление равно нулю), высота выбранной краевой точки облачного покрова рассчитывается по соотношению:

где обозначено для реализации способа по варианту 1:

Li=OAi, i=1, 2 - радиус-вектора точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова на моменты выполнения первого и второго снимков;

Ri=OBi, i=1, 2 - радиус-вектора точек местоположения КА на моменты выполнения первого и второго снимков;

и для реализации способа по варианту 2:

Li=OEi, i=1, 2 - радиус-вектора точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова с первого и второго КА на момент выполнения съемки;

Ri=ODi, i=1, 2 - радиус-вектора точек местоположения первого и второго КА на момент выполнения съемки;

G вычисляется как радиус Земли вдоль векторного произведения [[L2, R2], [L1, R1]].

Опишем технический эффект предлагаемого изобретения.

Предложный способ обеспечивает оперативное определение высоты краевой точки видимого с КА облачного покрова над различными точками земной поверхности. Способ позволяет оперативно измерять высоту облачного покрова над подстилающей земной поверхностью вдоль орбит множества различных КА дистанционного зондирования Земли, на борту которых размещена разнообразная съемочная аппаратура. В том числе обеспечивается возможность практически одновременного определения высоты облачности над разнесенными по расстоянию районами земной поверхности, а также возможность оперативного определения высоты облачности над оперативно задаваемыми районами интереса.

Достижение технического результата обеспечивается за счет предложенного выбора вида изображения и объекта измерения и выполнения предложенной съемки облачного покрова с КА в предложенные моменты времени, за счет выполнения предложенных навигационных измерений орбиты КА и предложенного вида обработки полученных снимков, а также за счет предложенного определения высоты облачности по высоте выбранной краевой точки облачного покрова с использованием предложенного соотношения для определения упомянутой высоты облачности.

В настоящее время технически все готово для реализации предложенного способа. Навигационные измерения орбиты КА могут быть выполнены с помощью автономной системы навигации КА, основанной на использовании информации от спутниковых навигационных систем. Измерение орбитальных координат направления визирования может быть выполнено с использованием технических средств позиционирования и наведения съемочной аппаратуры (платформы наведения и т.д.). Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 51-60 из 379.
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa16

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки...
Тип: Изобретение
Номер охранного документа: 0002509257
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abcc

Способ заправки рабочим телом гидравлической магистрали замкнутого жидкостного контура, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и устройство для его осуществления

Группа изобретений относится к системам терморегулирования (СТР), преимущественно, космических аппаратов, может быть использована при их подготовке к летной эксплуатации, а также в других областях. В предлагаемом способе перед заполнением отвакуумированной гидравлической магистрали рабочим...
Тип: Изобретение
Номер охранного документа: 0002509695
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b3f7

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002511788
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44e

Жидкостно-газовый реактивный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и...
Тип: Изобретение
Номер охранного документа: 0002511877
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bce5

Способ измерения электрического сопротивления изоляции между группой объединенных контактов и отдельным контактом и устройство его реализации

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002514096
Дата охранного документа: 27.04.2014
Показаны записи 51-60 из 352.
20.01.2014
№216.012.993e

Плавильная печь установки для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002504929
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a8e

Механизм коленного шарнира

Изобретение относится к протезированию нижних конечностей. Механизм коленного шарнира содержит верхнюю опорную головку с креплением гильзы бедра, нижний опорный кронштейн с креплением трубки голени, переходное кинематическое звено, по меньшей мере две оси вращения, а также голенно-откидное...
Тип: Изобретение
Номер охранного документа: 0002505272
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b4d

Космическое зубило (варианты)

Изобретение относится к космической технике, в частности к ручным инструментам, используемым космонавтом, снаряженным в скафандр, в условиях невесомости при выполнении технологических операций в процессе внекорабельной деятельности. Зубило для обработки материала в условиях космического...
Тип: Изобретение
Номер охранного документа: 0002505463
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f37

Узел крепления двух объектов

Изобретение относится к узлам крепления компонентов конструкции, преимущественно для крепления космических объектов при внекорабельной деятельности, и направлено на обеспечение исключения потерь крепежных элементов, а также обеспечение стопорения крепежного элемента при динамических нагрузках и...
Тип: Изобретение
Номер охранного документа: 0002506467
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a708

Осевой вентилятор

Заявленный осевой вентилятор может быть использован в составе систем терморегулирования изделий космической техники. Осевой вентилятор содержит корпус, спрямляющий аппарат в виде втулки с лопатками, размещенную внутри втулки гильзу с закрепленным в ней электродвигателем и рабочим колесом, а...
Тип: Изобретение
Номер охранного документа: 0002508475
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a71e

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, выполненным в виде теплоизолированной...
Тип: Изобретение
Номер охранного документа: 0002508497
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9f9

Модель стационарного плазменного двигателя

Изобретение относится к области электроракетных двигателей. В модели стационарного плазменного двигателя (СПД), содержащей кольцевую диэлектрическую разрядную камеру, с расположенным внутри нее кольцевым анодом-газораспределителем, магнитную систему и катод, внутри его разрядной камеры...
Тип: Изобретение
Номер охранного документа: 0002509228
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9fb

Диафрагменный насос

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования для космических летательных аппаратов. Насос включает мембранную головку с двумя полостями, образованными мембраной с корпусом и крышкой, между фланцами которых закреплен край мембраны, а также...
Тип: Изобретение
Номер охранного документа: 0002509230
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa15

Термокомпрессионное устройство

Изобретение относится к холодильной технике. Термокомпрессионное устройство содержит источник газа высокого давления с подключенными к нему баллонами-компрессорами, параллельно включенными в объединенную магистраль заправки баллонов-компрессоров и подачи газа потребителю на входе в...
Тип: Изобретение
Номер охранного документа: 0002509256
Дата охранного документа: 10.03.2014
+ добавить свой РИД