×
10.05.2016
216.015.3d40

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
0002583954
Дата охранного документа
10.05.2016
Аннотация: Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА) выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время. По полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точек местоположений КА на моменты выполнения снимков. По варианту 2 - по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. 2 н.п. ф-лы, 2 ил.

Изобретение относится к метеорологии и способам для определения физических параметров атмосферы, а также может быть использовано при интерпретации результатов дистанционного зондирования Земли из космоса.

Известен способ измерения высоты нижней границы облачности посредством измерителя (авторское свидетельство СССР №598390, МПК G01C 3/06, G01S 9/62, на изобретение «Измеритель высоты нижней границы облаков»), заключающийся в наблюдении пятна света, образованного на основании облака направленным вертикально вверх лучом прожектора, причем прожектор и фотоприемник разнесены на известное расстояние, а их оптические оси расположены в одной вертикальной плоскости. Недостатками этого способа являются малый ресурс работы источника световых импульсов измерителя, невысокая точность получаемых данных и невозможность проведения измерений в условиях солнечной засветки и несплошной облачности.

Известны также светолокационные способы измерения высоты нижней границы облачности, по которым в измерителях в качестве источника световых импульсов используются твердотельные лазеры (патент РФ №2136016, МПК G01S 17/95, G01W 1/00, на изобретение «Светолокационный измеритель высоты нижней границы облаков»; каталог фирмы Vaisala, Финляндия, Ceilometr CL31). Недостатками этих способов являются ограниченный ресурс работы твердотельного лазера, высокая стоимость его изготовления и эксплуатации, значительные габариты и потребляемая мощность измерителей, наличие активного излучателя.

Известен способ определения высоты нижней границы облачности (патент РФ №2377612 от 01.04.2008, МПК G01W 1/02, - прототип), по которому получают два разномасштабных изображения выбранного в качестве объекта измерения фрагмента нижней границы облачности, определяют размеры этих изображений, рассчитывают высоту нижней границы облачности, при этом измерения производят одновременно посредством двух идентичных оптико-электронных приборов, которые располагают так, чтобы их вертикальные линии визирования совпадали, а передние главные плоскости оптических систем были совмещены, при этом оптические системы оптико-электронных приборов имеют отличные друг от друга фокусные расстояния, а высоту нижней границы облачности определяют по предложенному соотношению.

В способе-прототипе определяют расстояние до выбранного в качестве объекта измерения фрагмента нижней границы облачности. Недостатком способа-прототипа является то, что для определения высоты облачного покрова над различными точками земной поверхности необходимо в данных точках стационарно размещать и ориентировать упомянутые оптико-электронные приборы. При этом требуется или заранее разместить оптико-электронные приборы во всех точках земной поверхности, над которыми может производиться определение высоты облачного покрова, или иметь возможность оперативно перемещать оптико-электронные приборы в данные точки. Данные требования существенно ограничивают или делают практически невозможным оперативное определение высоты облачного покрова над различными, в общем случае произвольными точками земной поверхности.

Задачей, на решение которой направлено настоящее изобретение, является оперативное определение высоты облачного покрова над различными точками земной поверхности.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в обеспечении оперативного определения высоты краевой точки видимого с космического аппарата (КА) облачного покрова.

Технический результат достигается тем, что в способе определения высоты облачности по варианту 1, включающем формирование изображений выбранного в качестве объекта измерения фрагмента облачности и определение высоты облачности по измеренным параметрам, дополнительно выполняют навигационные измерения орбиты космического аппарата и производят съемку с космического аппарата выбранной краевой точки видимого с космического аппарата на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время, по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова, по навигационным измерениям определяют координаты точек местоположений космического аппарата на моменты выполнения снимков и высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от линий, одна из которых проходит через точку местоположения космического аппарата на момент выполнения одного снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по данному снимку, а другая из которых проходит через точку местоположения космического аппарата на момент выполнения другого снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по данному снимку.

Кроме того, технический результат достигается тем, что в способе определения высоты облачности по варианту 2, включающем формирование изображений выбранного в качестве объекта измерения фрагмента облачности и определение высоты облачности по измеренным параметрам, дополнительно выполняют навигационные измерения орбит двух космических аппаратов и производят съемку с космических аппаратов выбранной краевой точки видимого с космических аппаратов на фоне земной поверхности облачного покрова при расположении данной краевой точки облачного покрова вне линии, соединяющей местоположения космических аппаратов, по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова, по выполненным навигационным измерениям определяют координаты точек местоположений космических аппаратов на момент выполнения съемки и высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от линий, одна из которых проходит через точку местоположения одного космического аппарата на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по снимку с данного космического аппарата, а другая из которых проходит через точку местоположения другого космического аппарата на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по снимку с данного космического аппарата.

Изобретение поясняется фиг. 1 и 2, на которых представлены схемы, поясняющие расчет упомянутого расстояния для вариантов 1 и 2 предлагаемого способа, соответственно, и введены следующие обозначения:

1 - элемент облачного покрова;

2 - участки земной поверхности, запечатленные на снимках;

3 - орбита КА;

О - центр Земли;

C - выбранная краевая точка облачного покрова;

H - высота выбранной краевой точки облачного покрова над земной поверхностью;

G - радиус Земли в направлении ОС;

B1, B2 - положения КА в момент выполнения, соответственно, первого и второго снимков;

A1, A2 - точки земной поверхности, лежащие на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения, соответственно, первого и второго снимков;

D1, D2 - положения, соответственно, первого и второго КА в момент выполнения съемки;

E1, E2 - точки земной поверхности, лежащие на линии визирования выбранной краевой точки облачного покрова с, соответственно, первого и второго КА в момент выполнения съемки.

В предлагаемом способе формируют изображение выбранного в качестве объекта измерения фрагмента облачности и определяют высоту облачности по измеренным параметрам. В качестве изображения используют фотоизображение, полученное путем съемки с КА. В качестве объекта измерения выбирают краевую точку видимого с КА на фоне земной поверхности облачного покрова.

В способе по варианту 1 выполняют навигационные измерения орбиты КА. Производят съемку с КА выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время.

Осуществляют координатную привязку полученных снимков к карте земной поверхности. Координатная привязка заключается в определении географических координат участков земной поверхности, запечатленных на полученных снимках. Координатная привязка снимков осуществляется, например, путем идентификации присутствующих на снимках характерных географических образований с установкой соответствия точек снимка географическим координатам, отраженным в картографических и геоинформационных системах. Используя полученные на снимках изображения и результаты выполненной координатной привязки, определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова в моменты выполнения первого и второго снимков.

По навигационным измерениям орбиты КА определяют координаты точек местоположений центра масс КА на моменты выполнения снимков.

Высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от двух линий:

- линии, проходящей через точку местоположения КА на момент выполнения первого снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по первому снимку, и

- линии, проходящей через точку местоположения космического аппарата на момент выполнения второго снимка и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова и координаты которой определены по второму снимку.

Задаваемое время между моментами выполнения снимков выбирают исходя из требования к точности определения высоты облачности. Точность определения высоты облачности по варианту 1 предлагаемого способа определяется углом между линией визирования выбранной краевой точки облачного покрова в момент выполнения первого снимка и линией визирования выбранной краевой точки облачного покрова в момент выполнения второго снимка и связанным с данным углом расстоянием между точками земной поверхности, лежащими на линиях визирования выбранной краевой точки облачного покрова в моменты выполнения снимков. Данный угол и расстояние могут быть взаимосвязаны со временем между моментами выполнения снимков. Например, для определения высоты облачности с заданной точностью снимаемую краевую точку облачного покрова и время между моментами выполнения снимков выбирают таким образом, чтобы обеспечивалось наличие необходимого расстояния между точкой А1 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения первого снимка, и точкой A2 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с КА в момент выполнения второго снимка. Чем больше расстояние A1A2, тем точнее может быть вычислено значение высоты облачности. Считаем, что возможное перемещение облачного покрова относительно земной поверхности за время между моментами выполнения снимков отсутствует или пренебрежительно мало.

Как отмечалось, условие выполнения снимков в моменты, отстоящие один от другого на задаваемое время, соответствует условию на значение угла между линиями визирования выбранной краевой точки облачного покрова в моменты выполнения снимков. С учетом этого, требуемая точность определения высоты облачности может быть обеспечена выполнением следующих действий: измеряют орбитальные координаты линии визирования выбранной краевой точки облачного покрова, фиксируют (запоминают) измеренные орбитальные координаты данной линии визирования на момент выполнения первого снимка, по зафиксированным и текущим измеренным орбитальным координатам данной линии визирования определяют угол между линией визирования выбранной краевой точки облачного покрова в момент выполнения первого снимка и линией визирования выбранной краевой точки облачного покрова в текущий момент времени и второй снимок выполняют в момент, когда значение данного угла будет находиться в задаваемом диапазоне значений, соответствующем требуемой точности определения высоты облачности.

В способе по варианту 2 выполняют навигационные измерения орбит двух КА. Производят съемку с КА выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова при расположении данной краевой точки облачного покрова вне линии, соединяющей местоположения КА.

Осуществляют координатную привязку полученных снимков к карте земной поверхности. Используя полученные на снимках изображения и результаты выполненной координатной привязки, определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова с одного и другого КА.

По выполненным навигационным измерениям определяют координаты точек местоположений центров масс первого и второго КА на момент выполнения съемки.

Высоту облачности определяют по высоте выбранной краевой точки облачного покрова, которая определяется как расстояние от земной поверхности до точки, минимально удаленной от двух линий:

- линии, проходящей через точку местоположения первого КА на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова с первого КА и координаты которой определены по снимку с первого КА, и

- линии, проходящей через точку местоположения второго КА на момент выполнения съемки и точку земной поверхности, лежащую на линии визирования выбранной краевой точки облачного покрова со второго КА и координаты которой определены по снимку со второго КА.

При расположении выбранной краевой точки облачного покрова на линии, соединяющей местоположения КА, линии визирования выбранной краевой точки облачного покрова с первого и второго КА совпадают и точка их пересечения не определена.

Точность определения высоты облачности по варианту 2 предлагаемого способа определяется углом между линиями визирования выбранной краевой точки облачного покрова с первого и второго КА и связанным с данным углом расстоянием между точками земной поверхности, лежащими на линиях визирования выбранной краевой точки облачного покрова с первого и второго КА. Например, для определения высоты облачности с заданной точностью снимаемую краевую точку облачного покрова и момент выполнения снимков выбирают таким образом, чтобы в момент выполнения снимков обеспечивалось наличие необходимого расстояния между точкой E1 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с одного КА, и точкой E2 земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова с другого КА. Чем больше расстояние E1E2, тем точнее может быть вычислено значение высоты облачности.

В способе по обоим вариантам расстояние от земной поверхности до точки, минимально удаленной от двух описанных линий, определяется вдоль общего перпендикуляра данных линий (вдоль отрезка, перпендикулярного данным линиям), и упомянутая точка минимального удаления рассчитывается как середина общего перпендикуляра. Описанные линии и общий перпендикуляр к ним полностью определяются вышеопределенными координатами КА и упомянутых точек земной поверхности. Например, в частном случае, когда описанные линии пересекаются (в этом случае, представленном на фиг. 1 и 2, упомянутая точка минимального удаления лежит на пересечении данных линий и минимальное удаление равно нулю), высота выбранной краевой точки облачного покрова рассчитывается по соотношению:

где обозначено для реализации способа по варианту 1:

Li=OAi, i=1, 2 - радиус-вектора точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова на моменты выполнения первого и второго снимков;

Ri=OBi, i=1, 2 - радиус-вектора точек местоположения КА на моменты выполнения первого и второго снимков;

и для реализации способа по варианту 2:

Li=OEi, i=1, 2 - радиус-вектора точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова с первого и второго КА на момент выполнения съемки;

Ri=ODi, i=1, 2 - радиус-вектора точек местоположения первого и второго КА на момент выполнения съемки;

G вычисляется как радиус Земли вдоль векторного произведения [[L2, R2], [L1, R1]].

Опишем технический эффект предлагаемого изобретения.

Предложный способ обеспечивает оперативное определение высоты краевой точки видимого с КА облачного покрова над различными точками земной поверхности. Способ позволяет оперативно измерять высоту облачного покрова над подстилающей земной поверхностью вдоль орбит множества различных КА дистанционного зондирования Земли, на борту которых размещена разнообразная съемочная аппаратура. В том числе обеспечивается возможность практически одновременного определения высоты облачности над разнесенными по расстоянию районами земной поверхности, а также возможность оперативного определения высоты облачности над оперативно задаваемыми районами интереса.

Достижение технического результата обеспечивается за счет предложенного выбора вида изображения и объекта измерения и выполнения предложенной съемки облачного покрова с КА в предложенные моменты времени, за счет выполнения предложенных навигационных измерений орбиты КА и предложенного вида обработки полученных снимков, а также за счет предложенного определения высоты облачности по высоте выбранной краевой точки облачного покрова с использованием предложенного соотношения для определения упомянутой высоты облачности.

В настоящее время технически все готово для реализации предложенного способа. Навигационные измерения орбиты КА могут быть выполнены с помощью автономной системы навигации КА, основанной на использовании информации от спутниковых навигационных систем. Измерение орбитальных координат направления визирования может быть выполнено с использованием технических средств позиционирования и наведения съемочной аппаратуры (платформы наведения и т.д.). Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.


СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)
СПОСОБ ОПРЕДЕЛЕНИЯ ВЫСОТЫ ОБЛАЧНОСТИ (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 281-290 из 379.
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dcb

Способ контроля текущего состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего...
Тип: Изобретение
Номер охранного документа: 0002640905
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
13.02.2018
№218.016.2438

Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Предложенный способ относится к области дистанционного мониторинга природных процессов, в частности роста и движения ледников. Способ определения положения фронтальной части ледника с находящегося на околокруговой орбите КА включает определение текущих параметров орбиты, съемку с КА ледника и...
Тип: Изобретение
Номер охранного документа: 0002642544
Дата охранного документа: 25.01.2018
13.02.2018
№218.016.2674

Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов. Способ контроля положения фронтальной части ледника с находящегося на околокруговой орбите космического аппарата (КА) включает определение текущих параметров орбиты, съемку с КА ледника и неподвижных...
Тип: Изобретение
Номер охранного документа: 0002644039
Дата охранного документа: 07.02.2018
Показаны записи 281-290 из 352.
29.12.2017
№217.015.fa09

Приёмник-преобразователь лазерного излучения

Изобретение может быть использовано в беспроводных системах дистанционного энергопитания воздушных или космических объектов. Предложенный приемник-преобразователь лазерного излучения включает несущую силовую конструкцию с установленной на ней приемной плоскостью площадью S, на внешней стороне...
Тип: Изобретение
Номер охранного документа: 0002639738
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00b2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра,...
Тип: Изобретение
Номер охранного документа: 0002629647
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0105

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата

Способ наблюдения наземных объектов с движущегося по околокруговой орбите космического аппарата (КА) относится к области дистанционного мониторинга природных и техногенных процессов. Способ наблюдения наземных объектов с движущегося по околокруговой орбите КА включает определение текущих...
Тип: Изобретение
Номер охранного документа: 0002629694
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1dc2

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает разворот СБ относительно направления на Солнце, измерение значений тока от СБ, сравнение измеренных значений тока с задаваемыми значениями и контроль...
Тип: Изобретение
Номер охранного документа: 0002640943
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1dcb

Способ контроля текущего состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) с инерционными исполнительными органами включает ориентацию нормали к рабочей поверхности СБ на Солнце, измерение значений тока от СБ и контроль текущего...
Тип: Изобретение
Номер охранного документа: 0002640905
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
+ добавить свой РИД