×
10.05.2016
216.015.3d2d

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ОКИСЛЕНИЯ ЦИКЛОАЛКАНОВ И СПОСОБ ПОЛУЧЕНИЯ СПИРТОВ И КЕТОНОВ

Вид РИД

Изобретение

Авторы

Правообладатели

№ охранного документа
0002583055
Дата охранного документа
10.05.2016
Аннотация: Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующие спирт и кетон, включающему контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа. Предлагаемый способ позволяет повысить степень превращения исходного циклоалкана и селективность по целевым продуктам при использовании катализатора, обладающего высокой окислительной способностью. 8 з.п. ф-лы, 1 табл., 2 пр.

Настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующий спирт и кетон, при этом указанный способ включает контактирование циклоалкана с гидропероксидом в присутствии каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа. Гидропероксиды могут, в частности, представлять собой трет-бутил-гидропероксид, трет-амил-гидропероксид, гидропероксид кумола, гидропероксид этилбензола, циклогексил-гидропероксид, метилциклогексил-гидропероксид, тетралин, гидропероксид изобутилбензола и гидропероксид этилнафталина.

Описание предшествующего уровня техники

Несколько различных способов было использовано для окисления циклогексана в смесь продуктов, содержащую циклогексанон и циклогексанол. Подобную смесь продуктов обычно обозначают как смесь КА (кетон/спирт). Смесь КA легко может быть окислена с получением адипиновой кислоты, которая является важным реагентом в способах получения некоторых конденсационных полимеров, в частности полиамидов. Принимая во внимание, что в указанных и других способах потребляется большое количество адипиновой кислоты, существует потребность в экономичных способах получения адипиновой кислоты и ее предшественников.

Способы с использованием гетерогенных катализаторов имеют преимущество, заключающееся в легкости разделения, и описаны во многих публикациях для катализа окисления циклогексана. Многие гетерогенные катализаторы базируются, главным образом, на подобной цеолитам основе, в которую включены переходные металлы или которая дополнена переходными металлами или благородными металлами.

В WO 1994/008032 описываются молекулярные сита с включенными в их структуру металлами, которые содержат алюминий, кремний и/или оксиды фосфора, и их применение для разложения циклогексил-гидропероксида. Описанный металл в решетке выбран из групп VB (W и т.д.), VIВ (Cr и т.д.) и VIIB (Co и т.д.) Периодической системы элементов.

В WO 2007/005411 раскрывается окисление циклогексана или каталитическое разложение циклоалгексил-гидропероксида с использованием усиленного золотом пористого кристаллического силиката, содержащего меньше чем приблизительно 2 мас.% алюминия или кристаллического фосфата. Кристаллический силикат имеет структуру BEA, FAU, MFI, MEL, MOR, MTW, MTT, МСМ-22, МСМ-41, МСМ-48, NU-1. Кристаллический фосфат имеет структуру AFI, AEL, АFO, AFR, AFS, AFT, AFY, ATN, ATO, ATS, ATT, ATV, AWW. Носитель на основе кристаллического силиката представляет собой обедненный алюминием цеолит, имеющий структуру, выбранную из группы AFI, AEL, AFO, AFR, AFS, AFT, AFY, ATN, ATO, АTS, ATT, ATV, AWW.

В WO 2004/071998 описывается гетерогенный катализатор для так называемого прямого окисления циклогексана. Катализатор описывается как усиленная золотом кристаллическая основа цеолитного типа, которая необязательно содержит один или несколько гетероатомов, выбранных из группы элементов Периодов 2, 3, 4 и 5.

Сохраняется потребность в гетерогенном катализаторе, обладающем высокой окислительной способностью, с целью достижения высокой степени превращения циклогексана и высокой селективности к маслу KA при относительно низкой концентрации циклоалкил-гидропероксида и при низкой стоимости приготовления катализатора.

Сущность изобретения

Оказалось, что вполне возможно получить смесь спирта и кетона из циклоалкана с высокой окислительной способностью, высокой селективностью к маслу KA и с хорошим балансом степени превращения и выхода. Подобные результаты могут быть получены с использованием каталитически эффективного количества кристаллического титаносиликатного катализатора MWW-типа.

Кроме того, настоящее изобретение относится к способу окисления циклоалкана с образованием смеси продуктов, содержащей соответствующий спирт и кетон, при этом указанный способ включает контактирование циклоалкана с гидропероксидом в присутствии эффективного количества кристаллического катализатора титаносиликатного катализатора MWW-типа.

Циклоалкан

Циклоалкан может относиться к насыщенным циклическим углеводородам, содержащим от 3 до приблизительно 10 атомов углерода, как правило, от приблизительно 5 до приблизительно 8 атомов углерода. Не ограничивающие настоящее изобретение примеры циклоалканов включают циклопентан, циклогексан, циклогептан и циклооктан.

Гидропероксид

Конкретные примеры гидропероксидных соединений, которые могут использоваться в настоящее время, могут быть представлены формулой (I)

R-О-О-Н (I),

где R может быть углеводородной группой, содержащей от 3 до 15 атомов углерода, в основном может представлять собой алкильные или арильные группы.

Гидропероксиды предпочтительно выбирают из группы, включающей: трет-бутил-гидропероксид, трет-амил-гидропероксид, гидропероксид кумола, гидропероксид этилбензола, циклогексил-гидропероксид, метилциклогексил-гидропероксид, гидропероксид тетралина (т.е. тетрагидронафталина), гидропероксид изобутилбензола и гидропероксид этилнафталина.

Более предпочтительно гидропероксиды представляют собой алкил-гидропероксиды, такие как трет-бутил-гидропероксид или циклогексил-гидропероксид.

Указанные гидропероксиды могут быть также использованы в виде комбинации из двух или нескольких соединений.

Гидропероксиды в соответствии с настоящим изобретением могут быть получены in situ, в частности, по реакции циклоалкана с кислородом или источником кислорода или добавлены в реакционную среду, в частности, в начале или в процессе реакции.

В одном варианте осуществления настоящего изобретения реакционная среда содержит циклоалкан и от 2 до 40 мас.% гидропероксидов от общей массы реакционной среды, более предпочтительно содержит от 5 до 20 мас.% гидропероксидов.

Кристаллический титаносиликатный катализатор MWW-типа

Кристаллический титаносиликатный катализатор MWW-типа по настоящему изобретению определяется в соответствии с Международной ассоциацией цеолитов (далее обозначается просто как "ΊΖΑ"), которая определяет цеолит в W. Meier, D.H. Meier, D.H. Olxon and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Edition, Elsevier (1996) (далее называют просто как "Атлас"). Структура MWW, которая является одной из известных структур молекулярных сит, отличается тем, что она имеет поры, включающие кольцевую структуру, содержащую 10 атомов кислорода и имеющую суперкаркас (0,7×0,7×1,8 нм). Указанная структура была одобрена IZA после публикации вышеуказанного Атласа.

Кристаллические титаносиликатные катализаторы MWW-типа, в частности, описаны в JP 63-297210, US 6759540 и Peng Wu et al. "Journal of Catalysis" 214 (2003) 317-326.

Катализатор по настоящему изобретению может иметь несколько возможных форм, которые являются модификациями исходного многослойного Ti-MWW предшественника, например: многослойную структуру MWW-типа, полностью и частично расслоенную форму, например МСМ-56, или структуру с раскрытыми порами (например, МСМ-36).

Указанный катализатор может иметь структуру MWW и может быть представлен следующей формулой химического состава: xTiO2·(1-x) SiO2, где х принимает значения в диапазоне от 0,0001 до 0,5, более предпочтительно х принимает значения от 0,01 до 0,13.

Катализатор по настоящему изобретению, в конечном счете, может дополнительно содержать один или несколько гетероатомов из группы элементов Периодов IB, IVB, VB, VIB, VIIB, VIIIB и VA, например алюминий, бор, ванадий, хром, галлий, железо, висмут, медь, золото и серебро. Металлы могут входить в решетку или представлять собой внерешеточные атомы.

В общем случае молярные соотношения добавок в геле, как определено в терминах количества моль агента, который образует матрицу MWW, количества моль SiO2 и количества моль TiO2, равны следующим молярным соотношениям: TiO2:SiO2=0,5-5:100; и агент, который образует матрицу MWW:SiO2=10-500:100. Молярное соотношение вода:SiO2 обычно составляет примерно 500-10000:100, и если используют растворитель, то молярное соотношение растворитель:SiO2 может быть в диапазоне 0-5000:100.

Катализатор по настоящему изобретению может быть использован в количестве, составляющем от 1 до 10 мас.%, предпочтительно от 1 до 7 мас.% по отношению к общей массе реакционной среды.

Параметры реакции

При осуществлении настоящего изобретения катализаторы могут контактировать с циклоалканом, таким как циклогексан, в слое катализатора, который формируется с целью обеспечения тесного контакта между катализатором и реагентами. В качестве альтернативы, катализаторы могут быть суспендированы в реакционных смесях с использованием методов, известных из данной области техники. Способ по настоящему изобретению пригоден как для порционного, так и непрерывного окисления циклоалкана. Указанные способы могут быть осуществлены в широком диапазоне технологических условий, что должно быть очевидным для специалистов.

Подходящие температуры реакции для способа по настоящему изобретению, как правило, находятся в интервале от приблизительно 20 до приблизительно 200°С, предпочтительно от приблизительно 50 до приблизительно 200°С, более предпочтительно от приблизительно 70 до приблизительно 140°С.

Давление реакции обычно находится в диапазоне от приблизительно 0,1 МПа (1 бар) до приблизительно 20 МПа (200 бар), и подобные значения не являются абсолютно необходимыми. Время пребывания циклоалкана в реакторе обычно меняется обратно пропорционально температуре реакции и обычно составляет от 30 до 1440 мин. В реакционной среде может быть использован чистый кислород, воздух, обогащенный кислородом или обедненный кислородом, или, в качестве альтернативы, кислород, разбавленный инертным газом.

В конечном счете, в реакционной среде может быть использован растворитель. Растворители предпочтительно выбирают из группы полярных протонных или апротонных растворителей, предпочтительно их выбирают из ацетонитрила или уксусной кислоты.

Как правило, активность кристаллического титаносиликатного катализатора MWW-типа для получения окисленного соединения уменьшается всякий раз, когда катализатор используют повторно, и после многократного использования катализатор не может проявить свою первоначальную активность. В таком случае извлеченный катализатор может быть регенерирован или восстановлен. Извлеченный катализатор можно регенерировать обычным известным способом. В частности, катализатор может быть регенерирован таким образом, что он сможет восстановить начальную активность, например путем прокаливания катализатора в воздухе.

По окончании реакции представляющее интерес соединение может быть очищено с помощью хорошо известных из данной области техники методов, таких как дистилляция.

Следующие примеры приведены только в иллюстративных целях, и их не следует рассматривать как ограничивающие настоящее изобретение.

Экспериментальная часть

Пример 1: Синтез цеолита Ti-MWW

Ti-MWW синтезируют в две стадии, в соответствии с публикацией группы профессора Wu (Wu P., J. Phys. Chem. B 2002, 106, 748-753). Вначале синтезируют Ti-содержащий MWW из плавленого оксида кремния (Cab-o-sil M7D), тетрабутилортотитаната, борной кислоты, пиперидина (PI) и дистиллированной воды. Затем Ti-содержащие предшественники кипятят с обратным холодильником в 2 М водном растворе HNO3 с тем, чтобы удалить внерешеточные атомы титана и часть входящих в решетку атомов бора. Твердый продукт отфильтровывают, промывают, сушат и, наконец, прокаливают при температуре 550°С в течение 10 ч.

Пример 2: Сравнение каталитических свойств Ti-MWW с другими катализаторами для окисления циклогексана

Содержащие переходные металлы цеолиты используют, чтобы катализировать реакцию окисления циклогексана с использованием трет-бутил-гидропероксида (TBHP) при температуре 80°С в течение 1,0 ч с 0,10 г катализатора и 6,0 мас.% TBHP в циклогексане. Результаты указаны в таблице 1.

Таблица 1
Попытка Катализатор Степень превращения
TBHP (%)
Селективность KA (%) Выход KA (%)
С1 Отсутствует 0,7 98,0 0,7
С2 Beta 92,4 5,25 4,86
С3 Si-Beta 1,09 98 1,07
С4 Cu-Beta 51,6 26,8 13,82
С5 Fe-Cr-Beta 98,9 15,6 15,43
С6 Co-Beta 66,2 15,6 10,33
С7 Cr-Beta 97,9 23,4 22,91
С8 Fe-MCM-22 70,2 15,6 10,95
С9 Na-Fe-MCM-22 41,2 13,6 5,60
С10 Fe-Beta 99,5 12,6 12,54
С11 TS-1 10,1 28,5 2,88
С12 Ti MCM-41 16,9 43,5 7,1
1 Ti-MWW 10,7 90,1 9,64

Как видно, без каких-либо катализаторов степень превращения TBHP и выход KA составляют меньше 1%. Катализатор Beta с содержащим Al3+ цеолитом демонстрирует высокую степень превращения TBHP (92,4%), но плохую селективность KA. Без Al3+ бета-цеолит из чистого диоксида кремния демонстрирует незначительную степень превращения TBHP и селективность KA. После включения в цеолит переходных металлов (Cu2+, Fe3+, Cr3+, Co2+) как селективность по отношению к маслу KA, так и выход КА повышаются по сравнению с катализатором, не содержащим переходных металлов. Несмотря на то что у всех указанных катализаторов имеются проблемы с выщелачиванием активных центров после первого прогона, наилучшие результаты по степени превращения, селективности и выходу получают только с цеолитным катализатором Ti-MWW.

Кроме того, видно, что каталитическая активность цеолитов при окислении циклогексана с использованием в качестве окислителя TBHP напрямую не коррелирует с эффективным размером пор. Она больше связана со структурой самих молекулярных сит и с координационным состоянием титана в молекулярных ситах. В настоящем изобретении Ti-MWW показывает наилучшую селективность по отношению к маслу KA (90,1%) и наибольший выход масла KA (9,64%). Вследствие предельного размера пор каталитическая активность Ti-MWW при окислении циклогексана, главным образом, возникает в той половине каркаса, которая находится вблизи поверхности цеолита.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 104.
27.04.2015
№216.013.4695

Композиция на основе церия, циркония и вольфрама, способ получения и применение в катализе

Изобретение относится к композиции для очистки выхлопных газов на основе церия, циркония и вольфрама. Предложенная композиция имеет следующие массовые содержания, выраженные в оксиде: оксид церия - от 5 до 30%, оксид вольфрама - от 2 до 17%, остальное - оксид циркония. При этом после старения...
Тип: Изобретение
Номер охранного документа: 0002549573
Дата охранного документа: 27.04.2015
10.05.2015
№216.013.4aae

Семейства ингибиторов солевых отложений, имеющих отличные профили поглощения, и их применение в нефтяном промысле

Изобретение относится к семействам ингибиторов солевых отложений и их применению в интенсификации притока из нефтяного месторождения. Способ обеспечения ингибирования образования солевых отложений в нефтяном месторождении, включающий стадии: a) введения по меньшей мере двух входящих потоков...
Тип: Изобретение
Номер охранного документа: 0002550625
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4b8b

Новый способ получения осажденных оксидов кремния

Изобретение относится к химической промышленности и может быть использовано при изготовления подложек катализаторов, поглотителей активных веществ, загустителей, антислёживающих агентов, добавок для зубных паст и бумаги. Способ получения осажденного оксида кремния включает реакцию осаждения...
Тип: Изобретение
Номер охранного документа: 0002550853
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d9b

Состав на основе оксидов церия, ниобия и, возможно, циркония и его применение в катализе

Изобретение касается каталитической очистки выхлопных газов двигателей внутреннего сгорания. Заявлен состав для очистки выхлопных газов двигателей внутреннего сгорания на основе оксида церия, содержащий оксид ниобия, со следующими массовыми содержаниями: оксид ниобия от 2 до 20%; остальное...
Тип: Изобретение
Номер охранного документа: 0002551381
Дата охранного документа: 20.05.2015
27.07.2015
№216.013.669f

Устройство для подачи присадки

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложено устройство 8 для подачи жидкой присадки в контур 1 циркуляции топлива двигателя внутреннего сгорания, содержащее головку 10 и сменную кассету 11, образующую камеру 22 для присадки, в которой расположен резервуар...
Тип: Изобретение
Номер охранного документа: 0002557824
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6ceb

Композиции модификатора реологии и способы их использования

Изобретение относится к композициям для повышения вязкости водных сред. Композиция содержит смесь по меньшей мере одного катионного или поддающегося катионизации полимера и по меньшей мере одного анионного или поддающегося анионизации полимера. Композиция имеет дзета потенциал при 25°С в...
Тип: Изобретение
Номер охранного документа: 0002559441
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6e9a

Сложный оксид, способ его получения и катализатор очистки выхлопных газов

Изобретение относится к сложным оксидам с высокой окислительно-восстановительной способностью при любых температурах для использования в катализаторах очистки выхлопного газа. Предложен сложный оксид, содержащий 1-20 ч. по массе кремния, в пересчете на SiO, на суммарные 100 ч. по массе...
Тип: Изобретение
Номер охранного документа: 0002559884
Дата охранного документа: 20.08.2015
20.10.2015
№216.013.8546

Способ получения ароматической композиции, включающей соединение, содержащее два твердых вещества, обладающих органолептическими свойствами

Изобретение относится к способу получения ароматической порошкообразной композиции, которая характеризуется точкой плавления T, превышающей или равной 30˚С. Подают раздельно в смеситель по меньшей мере два основных порошкообразных простых твердых вещества с органолептическими свойствами, точка...
Тип: Изобретение
Номер охранного документа: 0002565721
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8977

Способ обработки газа, содержащего оксиды азота (nox), путем применения композиции на основе циркония, церия и ниобия в качестве катализатора

Изобретение относится к способу обработки газа, содержащего оксиды азота (NOx). Способ обработки содержащего оксиды азота (NOx) газа, в соответствии с которым реакцию восстановления NOx осуществляют с азотсодержащим восстановителем, отличается тем, что в качестве катализатора реакции...
Тип: Изобретение
Номер охранного документа: 0002566794
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.97b9

Композиция, содержащая полиамид 66 и полиамид, выбранный из группы, состоящей из: полиамида 610, полиамида 1010 и полиамида 1012

Изобретение относится к композиции для получения изделий, обладающих повышенной химической стойкостью, и может применяться, в частности, для получения изделий, предназначенных для вмещения или перемещения текучих сред. Композицию получают смешиванием 15-60 вес.% полиамида 66, в котором...
Тип: Изобретение
Номер охранного документа: 0002570461
Дата охранного документа: 10.12.2015
Показаны записи 31-40 из 76.
10.07.2014
№216.012.dc27

Стабилизированная биоцидная композиция

Изобретение относится к биоцидам. Осуществляют стабилизацию водной композиции фосфониевого соединения, содержащего мышьяк в качестве примеси путем добавления эффективного для стабилизации мышьяка количества соединения, выбранного из группы, состоящей из аммиака, аммониевой соли, органической...
Тип: Изобретение
Номер охранного документа: 0002522137
Дата охранного документа: 10.07.2014
10.10.2014
№216.012.fa14

Композиция на основе оксидов циркония, церия и по меньшей мере одного другого редкоземельного металла со специфической пористостью, способ получения и применение в катализе

Изобретение относится к каталитической композиции, а также способам (вариантам) получения каталитической композиции для обработки выхлопных газов двигателей внутреннего сгорания на основе оксида циркония, оксида церия и оксида иттрия или на основе оксида циркония, оксида церия и по меньшей...
Тип: Изобретение
Номер охранного документа: 0002529866
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe10

Способ получения алкилгидропероксида

Настоящее изобретение относится к способу получения алкилгидропероксида, получаемого окислением кислородом циклического насыщенного углеводорода, выбранного из группы, содержащей циклогексан, циклооктан, циклодекан, декалин. Предпочтительно настоящее изобретение относится к получению...
Тип: Изобретение
Номер охранного документа: 0002530896
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ff95

Способ окисления углеводородов

Изобретение относится к способу окисления углеводородов, в частности, насыщенных углеводородов, для получения пероксидов, спиртов, кетонов, альдегидов и/или дикислот. В частности, предложен способ окисления насыщенного углеводорода молекулярным кислородом, включающий обработку выходящих...
Тип: Изобретение
Номер охранного документа: 0002531285
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.ffaa

Композиция на основе оксида циркония, оксида титана или смешанного оксида циркония и титана, нанесенная на носитель из оксида кремния, способы ее получения и ее применение в качестве катализатора

Группа изобретений может быть использована в производстве катализаторов, в частности, для селективного восстановления NO. Каталитическая композиция содержит по меньшей мере один оксид на носителе, состоящий из оксида циркония, или оксида титана, или смешанного оксида циркония и титана, или из...
Тип: Изобретение
Номер охранного документа: 0002531306
Дата охранного документа: 20.10.2014
10.12.2014
№216.013.0ecb

Способ непрерывного получения водных растворов бетаина

Настоящее изобретение относится к способу непрерывного получения водного раствора бетаина формулы (I), в которой n равно 1, 2 или 3, R и R означают прямолинейную или разветвленную алкильную группу, содержащую от 1 до 3 атомов углерода, R означает прямолинейную или разветвленную углеводородную...
Тип: Изобретение
Номер охранного документа: 0002535204
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.14b2

Способ добычи углеводородов при поддержании давления в трещиноватых коллекторах

Настоящее изобретение касается добычи углеводородов из трещиноватого коллектора. Способ добычи нефти из трещиноватого коллектора, матрица которого является смачиваемой нефтью, включающий по меньшей мере одну нагнетательную скважину и продуктивную скважину, которые обе сообщаются с трещинами и...
Тип: Изобретение
Номер охранного документа: 0002536722
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1be0

Способы и композиции для увеличения вязкости тяжелых водных рассолов

Изобретение относится к композициям для увеличения вязкости тяжелых рассольных систем. Способ увеличения вязкости рассольных систем, используемых при подземном ремонте скважин, включает: a) получение рассольной системы, включающей гидратированный полисахарид и, по меньшей мере, одну...
Тип: Изобретение
Номер охранного документа: 0002538564
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.22b1

Способ получения катализатора депероксидирования

Изобретение относится к способу получения катализатора депероксидирования алкилгидропероксида, содержащего хром в состоянии окисления 6+ в качестве основного каталитического элемента. Предлагаемый способ включает следующие этапы: растворение в воде хромового ангидрида; добавление к водному...
Тип: Изобретение
Номер охранного документа: 0002540334
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.24bc

Способ окисления углеводородов кислородом

Настоящее изобретение относится к способу окисления кислородом циклических насыщенных углеводородов, таких как циклогексан, циклооктан, циклододекан и декалин для получения алкилгидропероксида. В соответствии с изобретением окисление проводится в несколько последовательных этапов, чтобы...
Тип: Изобретение
Номер охранного документа: 0002540857
Дата охранного документа: 10.02.2015
+ добавить свой РИД