×
10.05.2016
216.015.3b52

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК

Вид РИД

Изобретение

Аннотация: Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности. Сущность: осуществляют воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценивают результаты воздействия. Воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны. Технический результат: расширение возможностей контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах. 5 ил.
Основные результаты: Способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок, включающий воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценку результатов воздействия, отличающийся тем, что воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия, или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны.

Изобретение относится к области контроля и диагностики совокупности эксплуатационных свойств износостойких покрытий, связанных, прежде всего, с твердостью, адгезионной прочностью, износостойкостью, и может быть использовано в машиностроении, судостроении и других отраслях, а также для покрытий, находящихся в условиях циклического нагружения, связанных, прежде всего, с эрозионной стойкостью поверхности.

Известен способ контроля качества покрытий деталей, включающий обработку поверхности струей металлических шариков высокой твердости, скорость струи выбирают наибольшей, обеспечивающей целостность покрытия в течение заданного промежутка времени, определяют соответствующую этой скорости кинетическую энергию струи, по которой судят о качестве покрытия [авт. свид. №999755, опубл. 10.12.2005 г.].

Недостатками известного способа являются:

- невозможность осуществления воздействия на микроуровне (диаметр шариков ~1 мм);

- повышенный нестационарный шум при проведении исследования, не позволяющего, в частности, эффективно использовать дополнительные средства диагностики, например метод акустической эмиссии;

- необходимость периодической очистки и замены шариков вследствие их износа.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ динамической оценки качества сцепления покрытия с подложкой, заключающийся в том, что внедряют в покрытие индентор под нагрузкой, сообщают индентору перемещение по поверхности покрытия, регистрируют сигналы акустической эмиссии и параметр, по величине которого в момент резкого роста интенсивности сигналов акустической эмиссии судят о качестве сцепления. Нагрузку на индентор выбирают одинаковой для всех покрытий серии, перемещение индентору сообщают циклическое на отрезках одинаковой длины с одной и той же скоростью для всех покрытий, а в качестве параметра регистрируют время от начала перемещения индентора до момента резкого роста интенсивности сигналов акустической эмиссии (авт. свид. №1752059, опубл. 27.01.2010). Данный способ принят за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа, - воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия; оценка результатов воздействия.

К недостаткам известного способа, принятого за прототип, можно отнести:

- воздействие на образец происходит при невысокой скорости движения индентора (~0,5 мм/с), что исключает появление сложных эффектов, возникающих при интенсивном динамическом нагружении (волновые, колебательные, вибрационные и другие процессы);

- износ индентора, который приводит к необходимости его замены;

- характер деформирования и разрушения покрытия при нагружении его индентором какой-либо формы (шар, пирамида, конус и т.д.) значительно отличается от реальных воздействий на покрытие в процессе эксплуатации изделия;

- при воздействии на износостойкое покрытие, нанесенное на пластичное основание, будет осуществляться деформация основания (подложки), а не покрытия, которое при этом останется целым, что не позволит оценить его адгезионные, когезионные и другие износостойкие свойства.

Задача изобретения - расширение возможностей контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах.

Поставленная задача достигается тем, что в известном способе, включающем воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценку результатов воздействия, согласно изобретению воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны.

Признаки заявляемого технического решения, отличительные от прототипа - воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер; оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия, или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны.

Воздействие на серию образцов различным числом циклов усталостного нагружения, например 2·104, 4·104, 6·104, 8·104 до наибольшего числа циклов нагружения, при котором происходит разрушение образца, позволяет обеспечить для любого исследуемого материала получение гидрокаверны, по размерам которой можно исследовать свойства любых покрытий, практически любой твердости, тем самым гарантируя эффективную диагностику исследуемого образца.

После нагружения до усталостного разрушения осуществляют воздействие высокоскоростной струей жидкости на образцы. Параметры скорости струи 300…1000 м/с обеспечивают образование гидрокаверны на поверхности покрытия любой твердости.

Оценка результатов воздействия производится несколькими способами:

1. Скоростью струи, при которой начинается интенсивное разрушение покрытия;

2. Скоростью подачи сопловой головки относительно поверхности диагностируемого образца или изделия;

3. Длиной гидрокаверны от точки начала воздействия до точки полного разрушения покрытия;

4. Измерением глубины и ширины гидрокаверны путем определения уноса массы с помощью высокоточных весов с точностью до 0,001 грамма, а также анализом сигнала, получаемого с помощью метода акустической эмиссии.

Использование различных способов оценки результатов воздействия струей расширяет возможности контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий на образцах.

Предлагаемый способ иллюстрируется чертежами, представленными на фиг. 1-5.

На фиг. 1 показана схема осуществления способа. На схеме обозначены: 1 - покрытие; 2 - образец; 3 - струя воды; 4 - сопловой блок установки гидроабразивной резки.

На фиг. 2 показан внешний вид полного разрушения покрытия.

На фиг. 3 показан внешний вид частичного разрушения покрытия.

На фиг. 4 изображена гидрокаверна при изменяемой скорости движения соплового блока.

На фиг. 5 изображен график зависимости глубины гидрокаверны от числа циклов усталостного нагружения.

Способ контроля и диагностики осуществляют следующим образом. Сопловым блоком установки гидроабразивной резки совершают поступательное прямолинейное движение (S), обеспечивая смещение точки воздействия струи со скоростью (0,3…20)10-3 м/с. Высокоскоростная струя жидкости, например воды, истекающая со скоростью V, вызывает разрушение покрытия (область этого разрушения показана на фиг. 1 штриховкой крест-накрест, а на фиг. 2, 3 показан внешний вид полного и частичного разрушения покрытия).

Эксперимент также проводят с уменьшенной скоростью движения соплового блока в направлении S, что дает оценку стойкости покрытия к различному времени действия струи. Критерием для сравнения стойкости покрытий является длина гидрокаверны от точки начала воздействия струи до точки полного разрушения покрытия. На фиг. 4 эта длина обозначена буквой L.

Помимо определения свойств покрытия предлагаемый способ позволяет оценить выработку пластичности материала образца при его усталостном нагружении.

Пример конкретного выполнения.

Производили диагностику образцов из листа стали марки AISI 430 (аналог 12X17) толщиной 1 мм с нанесенным на них покрытия из карбонитрида титана (TiCN) толщиной 2 мкм. Образцы подвергали циклическим испытаниям с числом циклов в диапазоне от 2·104 до 8·104. Затем они подвергались воздействию струи со скоростью 350 м/с при подаче соплового блока установки гидроабразивной резки со скоростью 15·10-3 м/с.

На фиг. 5 изображен график зависимости глубины гидрокаверны от числа циклов усталостного нагружения. По вертикальной оси отложена глубина гидрокаверны (мкм), а по горизонтальной - число циклов нагружения. В ходе экспериментов авторами впервые установлена такая зависимость. По графику обнаруживается момент начала ухудшения прочностных, адгезионных и других износостойких свойств покрытия. До точки, соответствующей 6·104 циклов, происходит снижение глубины каверны, что связано с выработкой пластичности материала образца. Далее видно, что в точке, соответствующей 6·104 циклов усталостного нагружения, начинается увеличение глубины гидрокаверны. Это обусловлено тем, что вследствие ухудшения износостойких характеристик покрытия происходит интенсивный отрыв его частиц, которые при действии высокоскоростной струи жидкости начинают вести себя как абразив. Схожее явление наблюдается и в реальных условиях эксплуатации: оторвавшиеся частицы покрытия, попадая между трущимися поверхностями, вызывают их преждевременный износ. Определение момента выработки покрытием своего ресурса и принятие мер по его восстановлению позволяет контролировать процесс износа.

Таким образом, заявляемый способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок приемлем для выбора оптимальных параметров покрытий конструкций, подверженных действию циклических нагрузок. Преимущества способа состоят в том, что он позволяет расширить возможности контроля и диагностики устойчивости покрытия к действию внешних нагрузок для определения остаточного ресурса покрытий за счет воздействия высокоскоростной струи жидкости на образцы, прошедшие циклические нагружения.

Способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок, включающий воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценку результатов воздействия, отличающийся тем, что воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия, или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны.
СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК
СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК
СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК
СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК
СПОСОБ КОНТРОЛЯ И ДИАГНОСТИКИ УСТОЙЧИВОСТИ ПОКРЫТИЯ К ДЕЙСТВИЮ ВНЕШНИХ НАГРУЗОК
Источник поступления информации: Роспатент

Показаны записи 121-123 из 123.
10.05.2016
№216.015.3b6c

Вискозиметр

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью. Внутри капилляра с зазором помещена калиброванная игла. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002583957
Дата охранного документа: 10.05.2016
10.05.2018
№218.016.480e

Способ исследования анизотропии эксплуатационно-технологических свойств объектов

Изобретение относится к области исследования эксплуатационно-технологических свойств токопроводящих конструкционных материалов и может быть использовано для определения анизотропии их физико-механических характеристик, формируемой на этапах изготовления и эксплуатации различных изделий,...
Тип: Изобретение
Номер охранного документа: 0002650731
Дата охранного документа: 17.04.2018
26.05.2019
№219.017.611e

Способ исследования состояния мягких тканей человека

Изобретение относится к медицинской технике, а именно к способу исследования упругости мягких тканей тела человека. Способ включает размещение вокруг части конечности тела человека измерительной манжеты. Далее подают в измерительную манжету воздух. Затем меряют давление в измерительной...
Тип: Изобретение
Номер охранного документа: 0002689017
Дата охранного документа: 23.05.2019
Показаны записи 121-130 из 132.
10.05.2016
№216.015.3b6c

Вискозиметр

Изобретение относится к области технической физики, а именно к технике определения вязкостных свойств жидких сред. Вискозиметр содержит вертикальный калиброванный капилляр, заполненный исследуемой жидкостью. Внутри капилляра с зазором помещена калиброванная игла. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002583957
Дата охранного документа: 10.05.2016
10.05.2018
№218.016.480e

Способ исследования анизотропии эксплуатационно-технологических свойств объектов

Изобретение относится к области исследования эксплуатационно-технологических свойств токопроводящих конструкционных материалов и может быть использовано для определения анизотропии их физико-механических характеристик, формируемой на этапах изготовления и эксплуатации различных изделий,...
Тип: Изобретение
Номер охранного документа: 0002650731
Дата охранного документа: 17.04.2018
14.11.2018
№218.016.9cb3

Интерактивная автоматизированная система для проведения научных исследований, проектирования и обучения персонала эксплуатации электротехнических комплексов в нефтяной отрасли

Интерактивная автоматизированная система для проведения научных исследований, проектирования и обучения персонала эксплуатации электротехнических комплексов в нефтяной отрасли (далее-система) относится к автоматизированным учебно-тренировочным средствам обучения персонала...
Тип: Изобретение
Номер охранного документа: 0002672163
Дата охранного документа: 12.11.2018
05.12.2018
№218.016.a39c

Стенд для измерения энергетических показателей энергоустановок

Изобретение относится к измерительной технике и может быть использовано для определения осевого усилия, угловой скорости, крутящего момента при экспериментальных исследованиях турбин и прочих энергоустановок. Стенд включает корпус 1, в котором установлен вращающийся вал 2, опирающийся на...
Тип: Изобретение
Номер охранного документа: 0002673869
Дата охранного документа: 30.11.2018
26.05.2019
№219.017.611e

Способ исследования состояния мягких тканей человека

Изобретение относится к медицинской технике, а именно к способу исследования упругости мягких тканей тела человека. Способ включает размещение вокруг части конечности тела человека измерительной манжеты. Далее подают в измерительную манжету воздух. Затем меряют давление в измерительной...
Тип: Изобретение
Номер охранного документа: 0002689017
Дата охранного документа: 23.05.2019
06.07.2019
№219.017.a730

Спутник-конструктор - учебно-демонстрационная модель

Изобретение относится к конструкции и оборудованию малых спутников модульного типа (формата CubeSat) и их моделям, используемым в учебных целях. Спутник-конструктор (СК) содержит базовую модульную платформу для формирования узлов и систем СК, бортовую сеть, не менее одного центрального...
Тип: Изобретение
Номер охранного документа: 0002693722
Дата охранного документа: 04.07.2019
01.09.2019
№219.017.c520

Способ гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов

Использование: для гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов. Сущность изобретения заключается в том, что осуществляют воздействие на испытуемый образец струей жидкости под давлением 350…380 МПа при скорости 800…850 м/с, при этом на испытуемый образец...
Тип: Изобретение
Номер охранного документа: 0002698485
Дата охранного документа: 28.08.2019
13.11.2019
№219.017.e116

Боеприпас

Изобретение относится к боеприпасам стрелкового и артиллерийского вооружения. Боеприпас, содержащий гильзу с капсюлем, в нижней части которой расположен основной пороховой заряд, и пулю, установленную под обтекателем, включает корпус, заполненный взрывным зарядом по периметру и порохом в...
Тип: Изобретение
Номер охранного документа: 0002705672
Дата охранного документа: 11.11.2019
12.04.2020
№220.018.1432

Способ определения остаточных напряжений

Изобретение относится к области определения остаточных напряжений в материале конструкции изделий на различных этапах их жизненного цикла и может быть использовано в машиностроительных технологиях, в том числе после изготовления: качества отверждения полимерных композиционных материалов,...
Тип: Изобретение
Номер охранного документа: 0002718631
Дата охранного документа: 10.04.2020
12.04.2023
№223.018.4930

Способ гидроабразивной резки и устройство для его осуществления

Изобретение относится к гидроабразивной резке. Устройство содержит гидроабразивное сопло, выполненное с возможностью подачи рабочей жидкости под давлением, элемент охлаждения сопла, выполненный с возможностью использования хладагента. Элемент охлаждения сопла выполнен в виде витой полой трубки,...
Тип: Изобретение
Номер охранного документа: 0002744633
Дата охранного документа: 12.03.2021
+ добавить свой РИД