×
10.05.2016
216.015.3b47

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СРАБАТЫВАНИЯ ПИРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПРИ ТЕПЛОВОМ ВОЗДЕЙСТВИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к оборудованию для испытаний пиротехнических изделий (ПИ). Способ определения характеристик самопроизвольного срабатывания ПИ включает тепловое воздействие на корпус ПМ с заданным темпом нагрева до момента его самопроизвольного срабатывания и фиксацию температуры корпуса ПИ, при которой произошло самопроизвольное срабатывание. Повторяют эту операцию поочередно с другими аналогичными ПИ с заданным шагом по темпу нагрева до получения зависимости температуры самопроизвольного срабатывания от времени нагрева корпуса, по которой определяют время самопроизвольного срабатывания ПИ при его аварийном спуске с использованием расчетного темпа нагрева корпуса ПИ. Устройство содержит нагреватель с рабочей камерой, средство измерения температуры, установленное на корпусе ПИ и подключенное к регистратору температуры, источник питания регулируемой мощности, подключенный к нагревателю, который выполнен в виде теплового излучателя и размещен по внешнему контуру рабочей камеры. Рабочая камера выполнена из прозрачного электроизолирующего материала и вместе с нагревателем помещена в изолирующий кожух. Обеспечивается возможность определения времени самопроизвольного срабатывания ПИ в зависимости от темпа нагрева корпуса ПИ. 2 н.п. ф-лы, 2 ил.

Изобретение относится преимущественно к области ракетно-космической и авиационной техники, а именно к испытательному оборудованию, и предназначено для определения характеристик срабатывания различных пиротехнических изделий (ПИ) (пироболтов, пирозамков, пироэнергодатчиков и др.), подвергающихся тепловому воздействию.

Изобретение в первую очередь направлено на решение вопроса о том, может ли при заданном темпе нагрева корпуса ПИ произойти самопроизвольное срабатывание, и если может, то через какой промежуток времени. Данная постановка задачи актуальна, например, при проектировании возвращаемых аппаратов космической техники и выборе пиротехнических изделий для средств разделения. При баллистическом (нештатном) спуске возвращаемого аппарата в случае несрабатывания средств разделения после подачи импульса на подрыв ПИ необходимо знать, когда произойдет самопроизвольное срабатывание ПИ от нагрева при входе в плотные слои атмосферы.

Известен способ определения характеристик срабатывания бытовых ПИ, а именно способ определения факта невоспламеняемости (отсутствия самопроизвольного срабатывания) бытовых ПИ при тепловом воздействии и устройство для его осуществления (МВД РФ, Государственная противопожарная служба. Нормы пожарной безопасности. «Изделия пиротехнические бытового назначения. Требования пожарной безопасности. Методы испытаний», НПБ 255-99, п.27).

Этот способ заключается в следующем

. В центре термостата (устройства для создания и поддержания постоянной температуры) размещают термоэлектрический преобразователь (термопару). ПИ подвешивают на проволоке вблизи центра термостата так, чтобы спай термопары (датчик для измерения температуры) был размещен на стенке в средней части ПИ. Включают термостат и нагревают его с заданным темпом нагрева (1-2°C/мин) до заданной температуры (100°C). После этого ПИ термостатируют (выдерживают при постоянной температуре термостата) в течение 30 мин. Испытания выполняют последовательно не менее чем на трех ПИ. Если в процессе испытаний зарегистрировано спонтанное повышение температуры (как в процессе выхода на режим, так и в ходе термостатирования ПИ), термостат отключают. После завершения испытаний и остывания термостата до комнатной температуры открывают дверцу и осматривают ПИ.

ПИ считают устойчивым к нагреву, если ни в одном из трех испытаний не произошло воспламенения при заданной температуре.

ПИ считают неустойчивым к нагреву, если хотя бы в одном из трех испытаний оно воспламенилось, а также, если произошел спонтанный рост температуры в процессе выхода на режим (сверх установленного темпа роста температуры) или в режиме термостатирования при заданной температуре.

Устройство для осуществления этого способа включает в себя:

- нагреватель в виде термостата с рабочей камерой вместимостью не менее 40 куб. дм и терморегулятором, позволяющим поддерживать постоянную температуру в рабочей камере в диапазоне от 60°C до 250°C с погрешностью не более 3°C;

- термоэлектрический преобразователь, выполненный в виде термопары с максимальным диаметром рабочего спая не более 1,5 мм;

- потенциометр;

- проволока диаметром 1-2 мм из теплопроводного металла;

- секундомер с классом точности не ниже 3.

Недостатком известного способа является то, что факт не воспламенения (не возгорания) ПИ определяется только для одной конкретной температуры 100°C. При этом невозможно узнать, как будет себя вести ПИ при более высоких температурах.

Другой недостаток известного способа заключается в том, что время выдержки в термостате назначается произвольно порядка 30 мин. Для одних ПИ этой выдержки может быть достаточно, а для других - нет. Как показали опыты, температура самопроизвольного воспламенения заряда зависит от темпа нагрева корпуса ПИ: чем выше темп нагрева, тем до большей температуры можно нагреть корпус к моменту самопроизвольного срабатывания. При уменьшении темпа нагрева температура самопроизвольного срабатывания снижается и постепенно переходит в постоянное значение. Момент перехода в постоянное значение для каждого ПИ свой. Он может быть как больше, так и меньше, чем время испытания по известному способу. Если он меньше, то при испытаниях ПИ тратится излишнее время, а если больше, то испытания с положительным результатом проходит непригодное ПИ.

Следующий недостаток - двухступенчатый режим нагрева (нагрев с изменяющимся темпом от 1 до 2°C/мин и выдержка при постоянной температуре). Такой режим нагрева не пригоден для определения температуры самопроизвольного срабатывания ПИ, так как имеется неопределенность влияния на факт срабатывания участка нагрева и участка выдержки при постоянной температуре.

Таким образом, известный способ не может обеспечить получение характеристик срабатывания ПИ (времени самопроизвольного срабатывания) при тепловом воздействии и здесь необходим другой подход, заключающийся в том, что экспериментально определяется зависимость температуры корпуса ПИ при самопроизвольном срабатывании от темпа нагрева, по которой судят о времени самопроизвольного срабатывания ПИ в условиях эксплуатации при тепловом воздействии.

Известный способ взят за прототип, поскольку он предназначен для определения характеристик срабатывания ПИ и в нем осуществляется нагрев испытуемого ПИ, как и в заявленном изобретении.

Недостатком устройства для осуществления известного способа является сравнительно большая инерционность термостата и невозможность контроля температуры непосредственно самого корпуса ПИ, так как термопара измеряет температуру воздуха в центре термокамеры вблизи ПИ и приходится давать выдержку 30 минут, чтобы температура воздуха и корпуса ПИ выровнялись.

При помощи известного устройства можно производить нагрев корпуса ПИ только с относительно низкими темпами нагрева 1-2°C/мин. В известных нештатных ситуациях конструкция космических аппаратов, содержащих ПИ, по расчетным оценкам нагревалась до 500…600°C в течение 5…7 минут. В результате происходило самопроизвольное срабатывание ПИ. Таким образом, представляющие интерес темпы нагрева, на один-два порядка превышают темпы нагрева известных устройств.При срабатывании многих ПИ, применяемых в авиационной и космической технике, происходит разлет осколков, которые могут разрушить дорогостоящий термостат, и известное устройство просто непригодно для испытаний таких ПИ.

В известном устройстве не предусмотрена защита от осколков при срабатывании ПИ, тем самым не обеспечивается на должном уровне безопасность проведения работ.

Известное устройство принято за прототип, поскольку оно предназначено для определения характеристик срабатывания ПИ при тепловом воздействии, содержит нагреватель, рабочую камеру и средство измерения температуры, как и в заявленном изобретении.

Задачей заявленного изобретения является:

- возможность прогнозирования поведения ПИ при тепловых нагружениях и при проектировании аппаратов с безопасным разрушением конструкции;

- возможность анализа поведения ПИ в нештатных и аварийных ситуациях, связанных с высоким тепловым воздействием на бортовые ПИ, например, при нештатном спуске с орбиты.

Техническим результатом изобретения является возможность определения времени самопроизвольного срабатывания ПИ в зависимости от темпа нагрева корпуса ПИ.

Технический результат достигается за счет того, что способ определения характеристик срабатывания пиротехнических изделий при тепловом воздействии включает тепловое воздействие на корпус пиротехнического изделия с заданным темпом нагрева и определение факта его самопроизвольного срабатывания, тепловое воздействие на пиротехническое изделие производят с заданным постоянным темпом нагрева корпуса до момента его самопроизвольного срабатывания и фиксируют температуру корпуса пиротехнического изделия, при которой произошло самопроизвольное срабатывание, повторяют эту операцию поочередно с другими аналогичными пиротехническими изделиями с заданным шагом по темпу нагрева до получения зависимости температуры самопроизвольного срабатывания от времени нагрева корпуса, по которой определяют время самопроизвольного срабатывания пиротехнического изделия при аварийном спуске штатного изделия, используя расчетный темп нагрева корпуса пиротехнического изделия.

Технический результат достигается и тем, что в устройство для определения характеристик срабатывания пиротехнических изделий при тепловых нагрузках, содержащее нагреватель с рабочей камерой, средство измерения температуры, подключенное к регистратору температуры, введены изолирующий кожух, источник питания регулируемой мощности, подключенный к нагревателю, который выполнен в виде теплового излучателя и размещен по внешнему контуру рабочей камеры, при этом рабочая камера выполнена из прозрачного электроизолирующего материала и вместе с нагревателем помещена в изолирующий кожух, а средство измерения температуры установлено на корпусе пиротехнического изделия.

Сущность изобретения поясняется чертежами (фиг. 1 и фиг. 2).

На фиг. 1 представлен пример устройства для определения характеристик срабатывания ПИ (разрывного пироболта) при тепловом воздействии. На фиг. 1 приняты следующие обозначения:

1 - ПИ (пироболт);

2 - кварцевая трубка;

3 - тепловой излучатель;

4 - источник электропитания с регулируемой мощностью;

5 - датчик температуры (термопара);

6 - регистратор температуры;

7 - изолирующий кожух.

На фиг. 2 представлена диаграмма температур самопроизвольного срабатывания от времени нагрева корпусов испытываемых ПИ, на которую нанесены результаты экспериментальных данных по испытаниям семи пироболтов и осредняющая их зависимость «А». Здесь приняты следующие обозначения: СС - самопроизвольное срабатывание; ССО - самопроизвольное срабатывание отсутствует.

Пироболт (1) помещают внутрь кварцевой трубки (2), на которой размещен тепловой излучатель (3), выполненный, например, из нихромовой проволоки, намотанной в виде спирали на внешнюю поверхность кварцевой трубки (2) и подключенный к источнику электропитания с регулируемой мощностью (4). На корпусе пироболта (1) закреплен датчик температуры (5), подключенный к регистратору температуры (6). Кварцевая трубка (2) с излучателем (3) помещена в изолирующий защитный (от разлетающихся осколков) кожух (7). Кварцевая трубка с намотанной нихромовой проволокой дешева и проста в изготовлении и является одноразовым сменным элементом, заменяемым, как и ПИ после каждого срабатывания.

Излучатель (3) может обеспечить быстрый нагрев корпуса ПИ до температур порядка 1100°C, что позволяет нагревать ПИ, помещенные в рабочую камеру (например, кварцевую трубку 2) с высокими темпами нагрева, на порядки, превышающие темпы нагрева в обыкновенных термостатах, например 100-500°C/мин. Датчик температуры (5), например, термопара, закреплен на корпусе ПИ (1) и подключен к входу регистратора температуры (6).

Предложенный способ может быть осуществлен при помощи устройства, представленного на фиг. 1, следующим образом.

На ПИ (1), помещенное в кварцевую трубку (2), осуществляют тепловое воздействие тепловым излучателем (3) от источника электропитания регулируемой мощности (4) путем нагрева корпуса ПИ с заданным постоянным темпом до момента самопроизвольного срабатывания ПИ и фиксируют датчиком температуры (5) при помощи регистратора температуры (6) температуру корпуса ПИ, при которой произошло самопроизвольное срабатывание. Данная температура фиксируется по резкому скачку температуры на диаграмме «температура - время нагрева корпуса», так как осколками пироболта разрушается кварцевая трубка (2) с тепловым излучателем (3), находящаяся внутри изолирующего кожуха (7), препятствующего разлету осколков ПИ. Операцию повторяют поочередно с другими аналогичными пиротехническими изделиями с заданным шагом по темпу нагрева до получения зависимости «А»: температуры самопроизвольного срабатывания (Тсср) от темпа (времени) нагрева корпуса ПИ (фиг. 2), по которой судят о времени самопроизвольного срабатывания ПИ, например, при аварийном спуске штатного изделия, используя расчетный темп нагрева корпуса ПИ.

Сказанное можно пояснить примером конкретной реализации.

Пироболт №1 самопроизвольно сработал при достижении температуры 180°C с темпом нагрева 29,7°C/мин. Пироболт №2 самопроизвольно сработал при достижении температуры 160°C с темпом нагрева 11,2°C/мин и последующей выдержки в течение 55 с при этой температуре. Пироболт №3 самопроизвольно не сработал при достижении температуры 125°C с темпом нагрева 2,2°C/мин и выдержки при этой температуре в течение 1800 с. Пироболт №4 самопроизвольно не сработал при достижении температуры 125°C с темпом нагрева 4,6°C/мин и выдержки при этой температуре в течение 7200 с. Пироболт №5 самопроизвольно сработал при нагреве до 140°C с темпом нагрева 3,6°C/мин и последующей выдержке при этой температуре в течение 540 с. В то же время пироболт №6, нагретый до температуры 140°C с темпом нагрева 5,5°C/мин, не сработал после выдержки 180 с. Пироболт №7, нагретый до 140°C с темпом нагрева 7,1°C/мин, не сработал после выдержки 480 с, а самопроизвольно сработал только после повторного нагрева до температуры 160°C с темпом 8,2°C/мин (на фиг. 2 отмечен как №7 бис).

Из полученных результатов следует, что пироболты №1, 2, 5 и 7 бис самопроизвольно срабатывали, когда на диаграмме «температура самопроизвольного срабатывания - время нагрева корпуса» температура нагрева пироболтов оказывалась вблизи осредняющей зависимости «А». При этом с постоянным темпом нагревались только болты №1 и №2, болты №5 и №7 бис выдерживались до момента самопроизвольного срабатывания при постоянной температуре определенное время.

Кривые нагрева несработавших самопроизвольно пироболтов располагаются на диаграмме ниже зависимости Тсср, хотя максимальная температура некоторых болтов (№6 и №7) превышала температуру самопроизвольного срабатывания при больших временах нагрева.

Следовательно, факт самопроизвольного срабатывания при данном времени нагрева и данной температуре слабо зависит от режима нагрева и полученную указанным способом зависимость Тсср от времени нагрева корпуса пироболта можно использовать для прогнозирования поведения ПИ при нештатном нагреве. Достаточно наложить расчетную кривую нагрева ПИ на зависимость Тсср и точка их пересечения определит время самопроизвольного срабатывания.

Из диаграммы видно, что при увеличении темпов нагрева значения температур Тсср резко возрастают. Физический смысл этого явления состоит в том, что при высоких тепловых потоках нагревается до высоких температур только поверхность корпуса ПИ, заряд, расположенный внутри корпуса нагревается за счет термического сопротивления (тепловой инерции) конструкции до температуры самопроизвольного срабатывания только через определенное время.

При уменьшении темпа нагрева осредняющая зависимость «А» от времени становится более пологой и, начиная с некоторого характерного времени, превращается в горизонтальную прямую. Здесь температура самопроизвольного срабатывания уже не зависит от времени нагрева (стационарная область). Это характерное время - свое для каждого ПИ. В нашем случае, изображенном на фиг. 2, это время составляет 80-90 мин. С другой стороны, значение Тсср при небольших темпах нагрева может служить верхней границей температурного диапазона температур безопасного хранения (Тхр). Тем самым данное техническое решение позволяет обеспечить более надежное получение такой эксплуатационной характеристики, как температура безопасного хранения ПИ.

При спуске космических аппаратов с орбиты Земли при нештатных ситуациях могут реализовываться высокие темпы нагрева ПИ.

Имея такую характеристику ПИ, как зависимость Тсср от темпа (времени) нагрева, можно сказать, когда и при какой температуре осуществится самопроизвольное срабатывание.

Все вышесказанное подтверждает достижимость заявленного технического результата.


СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СРАБАТЫВАНИЯ ПИРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПРИ ТЕПЛОВОМ ВОЗДЕЙСТВИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СРАБАТЫВАНИЯ ПИРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПРИ ТЕПЛОВОМ ВОЗДЕЙСТВИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК СРАБАТЫВАНИЯ ПИРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПРИ ТЕПЛОВОМ ВОЗДЕЙСТВИИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 171-180 из 370.
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
Показаны записи 171-180 из 292.
20.10.2015
№216.013.84fb

Ионный двигатель

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной...
Тип: Изобретение
Номер охранного документа: 0002565646
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
+ добавить свой РИД