×
10.05.2016
216.015.3ac3

Результат интеллектуальной деятельности: ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Вид РИД

Изобретение

Аннотация: Термоэмиссионный способ тепловой защиты частей летательных аппаратов (ЛА) включает отвод теплового потока от нагреваемой части ЛА к менее нагретой с помощью термоэмиссионного модуля посредством размещения на внутренней поверхности нагреваемых частей ЛА электропроводящего материала или покрытия, обладающего при нагреве высокой эмиссией электронов, - эмиттера, установку с зазором от эмиттера электропроводящего элемента - коллектора, на котором осаждают эмитируемые электроны и через бортовой автономный потребитель электроэнергии транспортируют к эмиттеру, с последующей герметизацией, вакуумированием образованной между эмиттером и коллектором полости и введением в нее химических элементов или соединений, уменьшающих работу выхода электронов. Изобретение направлено на снижение температурно-напряженного состояния частей двигательной установки ЛА. 2 з.п. ф-лы, 3 ил.

Изобретение относится к авиационной и ракетно-космической технике, в частности к тепловой защите частей летательных аппаратов (ЛА), совершающих полет в атмосфере со сверх- и гиперзвуковыми скоростями и может быть использовано в конструкциях двигательных установок (ДУ), например элементах камеры сгорания или сопла реактивных двигателей, подвергающихся воздействию сверхвысоких температур.

Одной из основных проблем на пути создания сверх- и гиперзвуковых ЛА является снижение интенсивности нагрева элементов конструкции, таких как носовая часть фюзеляжа, передние кромки крыльев, двигатель. Известно, что в процессе полета температура указанных выше участков корпуса может достигать 3000 К и выше.

Для решения проблемы нагрева ГЛА существуют различные методы тепловой защиты: теплопроводностью с использованием теплоемкости конденсированных веществ, конвекцией, массообменом, излучением с помощью электромагнитных полей и за счет физико-химических превращений. Выбор метода защиты зависит от нескольких факторов - тип и месторасположение элемента конструкции, допустимый уровень температур, величина и продолжительность воздействия теплового потока и т.п.

Одним из наиболее простых, надежных и отличающихся незначительной массой дополнительно вводимых средств является метод заградительного охлаждения, при котором холодный газ или жидкость вводится в пристеночный слой, образованный защищаемой конструкцией, например, камерой сгорания или соплом и жаровой трубой (см. Полежаев Ю.В., Юревич Ф.Б., Тепловая защита. / Под ред. А.В. Лыкова. М.: «Энергия», 1976, 408 с., рис. 1-2 на стр. 15 или см. Вьюнов С.А., Гусев Ю.И., Карпов А.В. и др. Конструкция и проектирование авиационных газотурбинных двигателей. / Под общей ред. Д.В. Хронина. М.: Машиностроение, 1989, 368 с., рис. 8.16 на стр. 409). Однако этот способ не обеспечивает необходимую тепловую защиту при больших скоростях полета ЛА с числом М>4.

Наиболее перспективными способами тепловой защиты различных частей ЛА являются способы, основанные на иных физических принципах, например на явлении термоэлектронной эмиссии.

Известен «Термоэмиссионный способ тепловой защиты частей летательных аппаратов при их аэродинамическом нагреве» (патент РФ №2404087, 2010, МПК BG4C 1/38, BG4G 1/50, ближайший аналог), заключающийся в том, что внутреннюю поверхность нагреваемой части ЛА покрывают материалом с высокой термоэмиссией электронов. С зазором 0,1…1 мм от этого покрытия (катода или эмиттера) размещают элемент (анод или коллектор), выполненный из электропроводящего материала. Температуру анода с помощью дополнительного устройства бортовой системы охлаждения поддерживают на уровне ниже температуры нагреваемой части ЛА и ее термоэмиссионного покрытия - катода. Эмитируемые с эмиттера электроны осаждают на катоде и через бортовой автономный потребитель электроэнергии транспортируют обратно к нагреваемой части ЛА (к эмиттеру). Технический результат изобретения состоит в снижении и стабилизации температуры частей ЛА при аэродинамическом нагреве, а также в возможности получения электрической энергии.

Основным недостатком известного термоэмиссионного способа тепловой защиты частей ЛА является использование бортовой системы охлаждения для снижения температуры улавливающего эмитируемые катодом электроны элемента - анода. Если нет необходимости в получении на борту ЛА дополнительной электроэнергии, то и нецелесообразно использовать указанный термоэмиссионный способ, а стоит охлаждать непосредственно внутреннюю поверхность нагреваемой части ЛА.

Технической задачей заявляемого изобретения является снижение температурно-напряженного состояния нагреваемых продуктами сгорания топлива частей двигательной установки ЛА организацией термоэмиссионного охлаждения с уменьшенной массой системы, повышение на этой основе их надежности с одновременной выработкой на борту ЛА электрической энергии.

Указанная техническая задача решается тем, что в заявляемом термоэмиссионном способе тепловой защиты частей ЛА, включающем отвод теплового потока от нагреваемой части ЛА к менее нагретой с помощью термоэмиссионного модуля посредством размещения на внутренней поверхности нагреваемых частей ЛА электропроводящего материала или покрытия, обладающего при нагреве высокой эмиссией электронов, - эмиттера, установку с зазором от эмиттера электропроводящего элемента - коллектора, на котором осаждают эмитируемые электроны и через бортовой автономный потребитель электроэнергии транспортируют к эмиттеру, с последующей герметизацией, вакуумированием образованной между эмиттером и коллектором полости и введением в нее химических элементов или соединений, уменьшающих работу выхода электронов, термоэмиссионный модуль размещают внутри нагреваемых частей ДУ ЛА, например элементах камеры сгорания или сопла реактивных двигателей, с ориентацией эмиттера со стороны воздействия внутреннего источника тепла в виде продуктов сгорания топлива, а коллектор термоэмиссионного модуля - со стороны охлаждения внешней окружающей средой.

Другое отличие состоит в том, что корпус нагреваемых частей двигательной установки ЛА камеры сгорания или сопла реактивных двигателей выполняют в виде термоэмиссионного модуля.

Дополнительное отличие заключается в возможности размещения термоэмиссионного модуля на внутренней поверхности корпуса камеры сгорания или жаровой трубы двигателя.

Принципиальное отличие предложенного способа состоит в том, что организацией термоэмиссионного охлаждения (с помощью ТЭМ) в ДУ тепловой поток от нагретых продуктами сгорания топлива элементов двигателя через эмиттер транспортируется к коллектору ТЭМ, где и сбрасывается в окружающую среду конвекцией и излучением без использования охлаждения коллектора специальной системой.

Важным в использовании предложенного термоэмиссионного способа тепловой защиты является определение температурного диапазона воздействующих на ТЭМ факторов: с нагреваемой стороны - температура продуктов сгорания топлива, с охлаждаемой стороны - температура восстановления внешнего аэродинамического потока и температура окружающей среды. Новый термоэмиссионный способ реализуем при температуре газов в камере сгорания или сопле двигателя 1800-3000 К (температура воздействия газов излучением и конвекцией на эмиттер ТЭМ) и, соответственно, температурой коллектора 800-1500 К.

Предложенное техническое решение иллюстрируется чертежами, поясняющими операции термоэмиссионного способа тепловой защиты:

на фиг. 1 схематически изображено поперечное сечение корпуса части реактивного двигателя (камеры сгорания или сопла), выполненного в виде ТЭМ;

на фиг. 2 схематически изображено поперечное сечение корпуса части реактивного двигателя с размещенным на внутренней поверхности корпуса ТЭМ;

на фиг. 3 схематически изображено поперечное сечение корпуса части реактивного двигателя с жаровой рубашкой с размещенным на ее внутренней поверхности ТЭМ.

На представленных чертежах введены следующие обозначения:

1 - внутренняя оболочка (корпус) ТЭМ;

2 - электроизоляция эмиттера;

3 - электропроводящий слой или материал - эмиттер;

4 - емкость для хранения и введения паров цезия и других химических соединений;

5 - внешняя оболочка ТЭМ;

6 - электроизоляция коллектора;

7 - электропроводящий слой или материал - коллектор;

8 - герметизированная и вакуумированная полость;

9 - токовывод коллектора;

10 - токоввод эмиттера;

11 - бортовой потребитель электрической энергии;

12 - тепловой поток от продуктов сгорания топлива;

13 - тепловой поток, сбрасываемый в окружающую среду;

14 - корпус части двигателя (камеры сгорания или сопла);

15 - зазор величиной 6 между корпусом части двигателя и жаровой рубашкой;

16 - жаровая труба;

17 - воздух для охлаждения жаровой трубы.

Следует отметить, что под введенным названием термоэмиссионный модуль (ТЭМ) понимается устройство, схематично представленное на фиг. 1 и включающее элементы поз. 1-11.

Предложенный термоэмиссионный способ тепловой защиты частей летательных аппаратов осуществляют следующим образом.

Тепловой поток 12 от продуктов сгорания топлива излучением и конвекцией нагревает внутреннюю оболочку 1 ТЭМ и через тонкую пленку электроизоляции 2 нагревает электропроводящий слой эмиттера 3. При достижении определенной температуры - не ниже 1500 К, эмиссионный слой 3 начинает излучать и эмитировать электроны, которые забирают с собой и переносят на электропроводящий слой 7 коллектора значительную часть тепла, за счет чего и происходит электронное охлаждение эмиттера. Одновременно поступающие из емкости 4 в герметизированную и вакуумированную полость 8 пары цезия, бария и т.п. других химических элементов уменьшают работу выхода электронов из слоя 3 и нейтрализуют образующийся в полости 8 объемный заряд электронов, препятствующий этому. Электропроводящий слой 7 коллектора через электроизоляцию 6 и внешнюю оболочку 5 ТЭМ охлаждают отводом теплового потока 13 в окружающую среду конвекцией и излучением. Таким образом поддерживают высокий перепад температур между электропроводящим слоем эмиттера 3 и электропроводящим слоем 7 коллектора. При этом осаждающиеся на коллекторе 7 электроны через токовывод коллектора 9 и бортовой потребитель электрической энергии 11 возвращаются на нагретый эмиттер 3 по токовводу 10. В электрической цепи, образованной эмиттером 3, коллектором 7, токовыводом коллектора 9, бортовым потребителем 11, токовводом 10, начинает протекать ток, который обеспечивает охлаждение оболочки 1, нагреваемой продуктами сгорания топлива ДУ, и получение на борту ЛА дополнительной электрической мощности.

Дополнительным отличительным признаком предложенного термоэмиссионного способа тепловой защиты является то, что ТЭМ размещают на внутренней поверхности элемента корпуса двигателя путем сопряжения коллектора 5 ТЭМ с внутренней поверхностью корпуса 14, с которой отводят тепловой поток 13 в окружающую среду (фиг. 2).

Также дополнительным отличием предложенного способа является размещение ТЭМ на внутренней поверхности жаровой трубы 16, установленной с зазором 8 относительно элемента корпуса двигателя 14 (фиг. 3). При этом тепловой поток от коллектора 5 через жаровую трубу 16 транспортируют в зазор 15, в котором происходит охлаждение подаваемым в жаровую рубашку воздухом 17 и далее направляют через корпус элемента двигателя 14 в окружающую среду для охлаждения.

Приведенные дополнительные отличия предложенного термоэмиссионного способа тепловой защиты, иллюстрируемые фиг. 2 и фиг. 3, являются весьма привлекательными с точки зрения технологии и экспериментальной отработки, т.к. позволяют отдельно отработать ТЭМ и установить его на существующие конструкции элементов двигателя с минимальным объемом доработок.

Материалами частей ТЭМ, реализующих предложенный способ термоэмиссионного охлаждения могут быть: для оболочек - тугоплавкие и жаропрочные сплавы металлов, например, с использованием никеля, вольфрама; электропроводящих слоев эмиттера и коллектора - моно- и поликристаллические вольфрам, молибден, рений, никель и их сплавы; в качестве электроизоляционных материалов эмиттера и коллектора - окислы алюминия, бериллия, различные металлокерамические системы с добавками тугоплавких металлов.

Осуществляя предложенный термоэмиссионный способ тепловой защиты элементов ДУ, возможно снизить температуры конструкции элементов двигателя на 102-103 градусов и дополнительно получить электрическую мощность от 10 до 100 кВт с одного квадратного метра площади электропроводящих слоев эмиттера (или коллектора).

Технический эффект заявляемого изобретения заключается в снижении высокотемпературного термического состояния поверхностей ДУ ЛА, находящихся в жестких температурных условиях от нагрева продуктами сгорания топлива, и повышении на этой основе их надежности и уменьшении массы и габаритов системы с одновременной выработкой на борту ЛА электрической энергии.

Принципиальное отличие предлагаемых операций состоит в организации термоэмиссионного преобразования энергии, получаемой от сгорания топлива, посредством нагрева эмиттера и охлаждения коллектора теплообменом с окружающей средой конвекцией и излучением.


ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
ТЕРМОЭМИССИОННЫЙ СПОСОБ ТЕПЛОВОЙ ЗАЩИТЫ ЧАСТЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 184.
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70d4

Система обеспечения теплового режима приборного отсека летательного аппарата

Система обеспечения теплового режима приборного отсека летательного аппарата (ЛА) содержит теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, внутренним контуром в виде контурных тепловых труб, установленных на теплонапряженных приборах и...
Тип: Изобретение
Номер охранного документа: 0002661178
Дата охранного документа: 12.07.2018
24.07.2018
№218.016.7440

Топливозаборник

Изобретение относится к области авиации, в частности к конструкциям топливных систем летательных аппаратов. Капиллярный топливозаборник состоит из капиллярных экранов и заборной трубы. Форма капиллярного экрана повторяет контур расходного отсека. Вход заборной трубы подведен ко дну расходного...
Тип: Изобретение
Номер охранного документа: 0002662106
Дата охранного документа: 23.07.2018
09.08.2018
№218.016.7913

Способ крепления термопар

Изобретение относится к области измерения температуры с использованием термопар, а именно к способам крепления термопар к объектам, подверженным деформациям вследствие линейных расширений при высоких температурах и вибрационным воздействиям, например к корпусам летательных аппаратов. Гибкий...
Тип: Изобретение
Номер охранного документа: 0002663277
Дата охранного документа: 03.08.2018
25.08.2018
№218.016.7f0a

Защитный экран от ионизирующего излучения для бортового комплекса оборудования

Изобретение относится к области радиационной защиты объектов. Защитный экран от ионизирующего излучения для бортового комплекса оборудования представляет собой двухслойную структуру, помещенную на наружную поверхность приборной рамы, располагающейся в приборном отсеке. Внешний слой представляет...
Тип: Изобретение
Номер охранного документа: 0002664715
Дата охранного документа: 22.08.2018
05.09.2018
№218.016.8346

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе и турбореактивный двухконтурный двигатель для его реализации

Способ повышения реактивной тяги в турбореактивном двухконтурном двигателе включает подачу окислительного и горючего рабочего тела в проточный тракт первого контура, их смесеобразование, сгорание и последующее истечение из него продуктов сгорания с получением механической энергии для вращения...
Тип: Изобретение
Номер охранного документа: 0002665760
Дата охранного документа: 04.09.2018
07.09.2018
№218.016.8409

Подвижный агрегат для термостатирования и газонасыщения компонентов ракетного топлива и заправки ракетной техники компонентами ракетного топлива

Изобретение относится к наземному оборудованию для изделий ракетно-космической техники. Подвижный агрегат (3) содержит емкость (8) для перевозки компонентов ракетного топлива (КРТ) на высокопроходимой колесной базе (2). Емкость (8) соединена с теплообменником (9) для термостатирования КРТ и...
Тип: Изобретение
Номер охранного документа: 0002665998
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.8494

Способ оперативной доставки полезной нагрузки

Изобретение относится к авиационно-космической технике. Способ включает выведение космоплана и размещенного на нем гиперзвукового летательного аппарата (ГЛА) с полезной нагрузкой (ПН) на орбиту дежурства. При поступлении команды о доставке ПН в заданный район космоплан спускают в атмосферу...
Тип: Изобретение
Номер охранного документа: 0002666011
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84d8

Способ поддержания состава орбитальной группировки автоматических космических аппаратов

Изобретение относится к эксплуатации группировки, преимущественно автоматических космических аппаратов (КА). Согласно способу комплектуют на Земле целевой КА, предназначенный для замещения неработающего КА (НКА), и сервисный КА. Выводят ракетой-носителем и разгонным блоком указанные КА на...
Тип: Изобретение
Номер охранного документа: 0002666014
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.84da

Устройство забора топлива из бака летательного аппарата

Изобретение относится к устройствам забора топлива из бака высокоманевренного летательного аппарата, использующего в системе топливоподачи капиллярные заборные устройства. Устройство забора топлива из бака летательного аппарата представляет собой размещенную в баке тонкостенную оболочку с...
Тип: Изобретение
Номер охранного документа: 0002666004
Дата охранного документа: 05.09.2018
Показаны записи 101-110 из 113.
25.07.2019
№219.017.b89b

Носовой обтекатель летательного аппарата в транспортно-пусковом контейнере

Изобретение относится к летательным аппаратам. Носовой обтекатель летательного аппарата (2) в транспортно-пусковом контейнере (3) состоит из днища (11) и корпуса (12), образующих разъемное соединение с обеспечением герметизации стыка. Между выступом носового обтекателя и передним торцом...
Тип: Изобретение
Номер охранного документа: 0002695470
Дата охранного документа: 23.07.2019
25.07.2019
№219.017.b8d9

Устройство для пакетирования штучных изделий

Изобретение относится к устройствам для пакетирования штучных изделий и может быть использовано в упаковочной технике, в пищевой и других отраслях промышленности. Устройство для пакетирования штучных изделий состоит из подающего конвейера 1, стоппера 4, датчика 7, механизма подъема изделий 8,...
Тип: Изобретение
Номер охранного документа: 0002695398
Дата охранного документа: 23.07.2019
01.11.2019
№219.017.dc4f

Шахтная установка для передачи тепла на большие расстояния при малых температурных перепадах

Изобретение относится к теплотехнике, в частности к системам обеспечения теплового режима на основе контурных тепловых труб. Шахтная установка для передачи тепла на большие расстояния при малых температурных перепадах содержит термоэлектрическую батарею и контурную тепловую трубу. Холодный спай...
Тип: Изобретение
Номер охранного документа: 0002704570
Дата охранного документа: 29.10.2019
04.11.2019
№219.017.de74

Композиция для изготовления высокотемпературного теплозащитного напыляемого покрытия

Изобретение относится к теплозащитным покрытиям, предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков. Композиция для изготовления теплозащитного покрытия включает (мас.ч.) фенолоформальдегидную смолу новолачного...
Тип: Изобретение
Номер охранного документа: 0002705081
Дата охранного документа: 01.11.2019
10.11.2019
№219.017.dfdb

Способ обеспечения теплового режима приборного отсека летательного аппарата

Изобретение относится к ракетно-авиационной технике, а более конкретно к обеспечению теплового режима в отсеках. При обеспечении теплового режима приборного отсека в летательном аппарате (ЛА) корпус отсека, включающий две оболочки, выполняют с внутренним расположением герметизирующей оболочки....
Тип: Изобретение
Номер охранного документа: 0002705402
Дата охранного документа: 07.11.2019
22.01.2020
№220.017.f8aa

Способ тепловакуумных испытаний космического аппарата

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы. На СП установлены тепловые эквиваленты или штатные приборы КА. В первом...
Тип: Изобретение
Номер охранного документа: 0002711407
Дата охранного документа: 17.01.2020
28.02.2020
№220.018.06ec

Цифровая система управления пиротехническими средствами

Изобретение относится к инициирующим устройствам для подрыва пиротехнических средств и может быть использовано в системах управления изделий ракетно-космической техники и в авиационных системах. Технический результат - увеличение функциональных возможностей системы, повышение безопасности и...
Тип: Изобретение
Номер охранного документа: 0002715277
Дата охранного документа: 26.02.2020
07.06.2020
№220.018.24c0

Способ расчета статических поправок

Изобретение относится к комплексу методов геофизической разведки, включающему сейсморазведку методом отраженных волн общей глубинной точки (MOB ОГТ) и электроразведку методом малоглубинных зондирований становлением поля в ближней зоне (мЗСБ), и может быть использовано для учета скоростных...
Тип: Изобретение
Номер охранного документа: 0002722861
Дата охранного документа: 04.06.2020
24.06.2020
№220.018.2a4a

Корпус несущего топливного бака летательного аппарата и способ его изготовления

Изобретение относится к топливным бакам летательных аппаратов. Корпус несущего топливного бака ЛА состоит из трех основных частей: передней части, средней герметичной, состоящей из корпуса переднего (10) и корпуса заднего (11), задней части, представляющей собой агрегатный отсек (12). Для...
Тип: Изобретение
Номер охранного документа: 0002724204
Дата охранного документа: 22.06.2020
29.06.2020
№220.018.2c5f

Способ напорного дозирования пенообразователя для установок автоматического пожаротушения и устройство для его осуществления

Способ напорный дозирования пенообразователя в воде для автоматических установок пенного пожаротушения содержит этапы, на которых используют два отдельно выполненные полностью идентичные каналы дозирования пенообразователя, причем один канал используют в качестве основного, рабочего, канала, а...
Тип: Изобретение
Номер охранного документа: 0002724836
Дата охранного документа: 25.06.2020
+ добавить свой РИД