×
27.04.2016
216.015.3a26

Результат интеллектуальной деятельности: СПОСОБ ЗАХОРОНЕНИЯ CO (ВАРИАНТЫ)

Вид РИД

Изобретение

Аннотация: Группа изобретений предназначена для использования в области подземного хранения CO и других вредных газов, а также защиты окружающей среды. Технический результат - повышение надежности хранилища и снижение затрат на его создание. В первом варианте реализации способа для закачки CO выбирают ловушку водоносного пласта с термобарическими параметрами, способствующими длительному захоронению CO в жидком агрегатном состоянии. Бурят скважины в купольной части структуры ловушки. Закачивают жидкий CO в центральные скважины и по мере опускания контакта «жидкий CO-вода» закачивают CO в периферийные скважины. Осуществляют контроль динамики пластового давления с одновременным мониторингом появления жидкого СО в наблюдательных скважинах. Закачку жидкого СО прекращают при обнаружения его в наблюдательных скважинах, а также при достижении в ловушке давления, соответствующего максимально допустимому пластовому давлению. Контроль за герметичностью по латерали ловушки осуществляют посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин. Во втором варианте реализации способа закачивают газообразный CO. Одновременно контролируют динамику пластового давления глубинными манометрами. При достижении давления в ловушке значения, соответствующего жидкому агрегатному состоянию CO, продолжают закачку CO уже в жидком агрегатном состоянии в приконтактные зоны ловушки, контролируя динамику пластового давления глубинными манометрами. 2 н.п. ф-лы, 6 ил.

Группа изобретений относится к области подземного хранения CO2 и других вредных газов, а также защиты окружающей среды и предназначена для длительного захоронения газовых выбросов, дымовых, парниковых и других вредных газов.

Вредные газы, как известно, могут находиться в различных агрегатных состояниях в зависимости от температуры и давления: твердом, жидком, газообразном и сверхкритическом. Каждому агрегатному состоянию присущи свои физические свойства и особенности. Наиболее распространенным вредным газом является CO2, значительное его количество вырабатывает энергетическая отрасль, автотранспорт и т.д.

В настоящее время захоронение газов, не утилизируемых и загрязняющих окружающую среду, таких как, например, дымовые, выхлопные газы, стало достаточно острой проблемой. До недавнего времени вредные газы, в том числе и CO2, предпочитали захоранивать в истощенных нефтяных и газовых месторождениях, а также месторождениях, не имеющих промышленного значения, водоносных пластах, шахтах, кавернах. CO2 обычно закачивали в ловушки с пластом-коллектором с достаточной емкостью и герметичной покрышкой. Как правило, известные технологии направлены на хранение газа без учета его агрегатного состояния, что приводит к большей подвижности газа при закачке в газообразном и сверхкритическом состоянии и, как следствие, к меньшей вместимости пласта, в котором хранится газ.

Техническим результатом предлагаемого изобретения является снижение затрат на создание хранилищ вредных газов требуемой емкости за счет хранения вредных газов в жидком агрегатном состоянии, а также исключение утечки вредных газов при таком их хранении.

Указанный технический результат достигается за счет разработки такого способа захоронения CO2, который заключается в том, что для закачки CO2 в геологических структурах выбирают ловушку водоносного пласта с термобарическими параметрами, способствующими длительному захоронению CO2 в жидком агрегатном состоянии, бурят скважины в купольной части структуры ловушки, после чего начинают закачивать жидкий CO2 в центральные скважины, затем по мере опускания контакта «жидкий CO2-вода» используют для закачки скважины, отдаленные от купольной части структуры, причем в процессе закачки жидкого CO2 осуществляют контроль динамики пластового давления посредством глубинных манометров с одновременным мониторингом появления жидкого CO2 в наблюдательных скважинах, расположенных вблизи замыкающей изогипсы ловушки, при этом закачка жидкого CO2 прекращается в случае обнаружения жидкого CO2 в наблюдательных скважинах, а также при достижении в ловушке давления, соответствующего максимально допустимому пластовому давлению, при этом контроль за герметичностью по латерали ловушки осуществляется посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин.

Кроме того, указанный технический результат достигается за счет реализации способа захоронения CO2, заключающегося в том, что для закачки CO2 выбирают ловушку истощенного месторождения углеводородов с термобарическими параметрами, способствующими длительному захоронению CO2 в жидком агрегатном состоянии, бурят скважины в купольной части структуры ловушки, после чего начинают закачивать в них газообразный CO2, в ходе чего осуществляют контроль динамики пластового давления глубинными манометрами, а при достижении давления в ловушке значения, соответствующего жидкому агрегатному состоянию CO2, продолжают закачку CO2 уже в жидком агрегатном состоянии непосредственно в приконтактные зоны ловушки, осуществляя контроль динамики пластового давления глубинными манометрами с одновременным мониторингом появления жидкого CO2 в наблюдательных скважинах, расположенных вблизи замыкающей изогипсы ловушки, при этом закачка жидкого CO2 прекращается в случае обнаружения жидкого CO2 в наблюдательных скважинах, а также при достижении в ловушке давления, соответствующего максимально допустимому пластовому давлению, при этом контроль за герметичностью по латерали ловушки осуществляется посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин.

Сущность заявленного изобретения подтверждается чертежами, на которых показаны принципиальные схемы размещения нагнетательных скважин на структурах водоносного пласта и истощенного месторождения углеводородов:

Фиг. 1 - фазовая диаграмма CO2;

Фиг. 2 - принципиальная схема размещения скважин в купольной части месторождения при закачке жидкого CO2 в ловушку водоносного пласта;

Фиг. 3 - принципиальная схема размещения скважин и закачки жидкого CO2 в ловушку водоносного пласта;

Фиг. 4 - принципиальная схема размещения скважин и закачки CO2 в ловушку истощенного месторождения углеводородов;

Фиг. 5 - схема ловушки с указанием замыкающей изогипсы;

Фиг. 6 - схема месторождения с указанием контрольных скважин.

Указанные чертежи включают в себя следующие позиции:

1 - ловушка истощенного месторождения углеводородов или водоносного пласта, куда осуществляется закачка CO2;

2 - приконтактная зона (контакт «жидкий CO2-вода»);

3 - центральные скважины (скважины, расположенные в купольной части местрождения);

4 - периферийные скважины (скважины, удаленные от купольной части месторождения);

5 - замыкающая изогипса ловушки;

6 - подошва ловушки;

7 - контрольные скважины, расположенные на вышезалегающих горизонтах.

Реализация заявленного изобретения описана ниже.

Известно, что в жидком состоянии вещество занимает существенно меньший объем, чем в газообразном и сверхкритическом состояниях, поэтому один и тот же объем ловушки будет вмещать большую массу CO2, находящегося в жидком агрегатном состоянии.

Масса газообразного CO2:

Масса сверхкритического CO2:

Масса жидкого CO2:

ρг, ρcк, ρж - плотность газообразного, сверхкритического, жидкого CO2;

Vл - поровый объем ловушки;

αг, αск, αж - коэффициент вытеснения газообразным, сверхкритическим, жидким CO2;

βг, βcк, βж - коэффициент использования ловушки газообразным, сверхкритическим, жидким CO2.

В пластовых условиях CO2 может находиться в различных агрегатных состояниях в зависимости от температуры и давления: жидком, газообразном и сверхкритическом.

Зависимость агрегатного состояния CO2 от таких характеристик, как температура и давление, показана на фазовой диаграмме (Фиг. 1).

В газообразном состоянии CO2 - бесцветный газ. Газообразному состоянию CO2 соответствует широкий диапазон температур и давлений, не превышающий кривую кипения АВ. Вязкость порядка 10-5 Па·с, коэффициент диффузии - 10-5 м2/с.

При температуре ниже 31°C и давлении, ограниченном линией кипения АВ, CO2 находится в жидком состоянии. Он представляет собой бесцветную жидкость. В зависимости от термобарических условий его плотность меняется от 600 до 1200 кг/м3. Вязкость порядка 10-3 Па·с, коэффициент диффузии - 10-9 м2/с.

При давлении 73,8 бар и температуре 31°C и выше CO2 находится в сверхкритическом состоянии, это значит, что различия между жидкой и паровой фазами отсутствуют. В сверхкритическом агрегатном состоянии CO2 ведет себя как газоподобный сжимаемый флюид, но вместе с этим имеет плотность, близкую к плотности жидкости. При повышении температуры или давления плотность CO2 приближается по значению к плотности жидкости, а его вязкость - к вязкости газа. При пластовых температуре и давлении, соответствующих области сверхкритического состояния, плотность меняется в пределах от 600 кг/м3 до 900 кг/м3. Вязкость порядка 10-5-10-4 Па·с, коэффициент диффузии - 108 м2/с.

При давлении 230 бар и температуре 32°C значение плотности сверхкритического CO2 максимально и равно 900 кг/м3, а то же значение плотности в жидком состоянии СО2 достигается при давлении 150 бар и температуре 23°С. Такая разница в требуемом давлении для хранения с одинаковой плотностью приведет к наиболее существенной экономии потребляемой мощности компрессорных станций для сжатия CO2.

При постоянной температуре вязкость воды будет в 16 раз больше вязкости жидкого CO2 и в 30 раз - сверхкритического CO2, плотность которого равна 800-900 кг/м3, а также в 48 раз больше плотности газообразного CO2. Из этого следует, что жидкий CO2 будет лучше оттеснять воду, чем CO2, находящийся в газообразном или сверхкритическом состоянии. Это приведет к увеличению вместимости пласта по CO2 вследствие более высокого коэффициента вытеснения.

Коэффициент диффузии самый высокий у CO2, находящегося в газообразном агрегатном состоянии, меньше - у CO2 в его сверхкритическом агрегатном состоянии, и самый низкий - у жидкого CO2. Тогда динамика уменьшения скорости диффузии CO2 выглядит так: газообразный, сверхкритический, жидкий.

Из-за идентичности значений плотностей и вязкостей сред жидкий CO2-вода, контакт «жидкий CO2-вода» будет иметь более горизонтальную форму, чем при газообразном или сверхкритическом агрегатном состоянии CO2, при которых контакт «CO2-вода» имеет негоризонтальную форму, тем самым занимая не весь объем ловушки. То есть при горизонтальном контакте «жидкий CO2-вода» вместимость пласта по CO2 увеличивается.

Из вышеизложенного следует, что для захоронения CO2 больше подходит жидкое агрегатное состояние, нежели газообразное или сверхкритическое. В пластовых условиях все физические свойства жидкого CO2 превышают свойства CO2 в газообразном и сверхкритическом агрегатных состояниях, но не свойства воды. Следовательно, жидкий CO2 будет находиться в породах выше водонасыщенных, обладать меньшей подвижностью, а также находиться в более компактном состоянии в пласте по сравнению с другими агрегатными состояниями. Такой вывод можно сделать не только относительно CO2, но и относительно любого вредного газа, находящегося в жидком агрегатном состоянии, плотность которого в этом состоянии меньше плотности воды. При таком соотношении плотностей для захоронения могут быть использованы ловушки различных типов. Если плотность вредных газов в жидком агрегатном состоянии будет больше плотности воды, то ловушки должны быть приурочены к синклинальной структуре, чтобы предотвратить растекание вредного газа, находящегося в жидком агрегатном состоянии, за пределы ловушки. В этом случае обязательна непроницаемая подошва пласта в ловушке.

При долгосрочном хранении жидкий CO2 необходимо закачивать в пласт, породы которого не вступают в химическую реакцию с угольной кислотой, образующейся при взаимодействии жидкого CO2 с пластовой водой. Такими породами являются песчаники, аргиллиты, бескарбонатные разновидности алевролитов и алевритов. При несоблюдении данного условия взаимодействие угольной кислоты с породой приведет к разрушению породы, за чем последует бесконтрольное растекание CO2. Другим условием, способствующим растеканию жидкого CO2, является наличие тектонических нарушений.

При реализации заявленного способа для долгосрочного хранения CO2 в геологической структуре выбирают ловушку с такими термобарическими параметрами, которые обеспечили бы нахождение CO2 внутри выбранной ловушки в самом оптимальном для его длительного хранения агрегатном состоянии. Далее в купольной части указанной структуры ловушки бурят скважины, через которые осуществляют закачку CO2 в ловушку. Для длительного хранения CO2 выбирают ловушки как водоносных пластов (Фиг. 2, 3), так и истощенных месторождений углеводородов (Фиг. 4), таких как, например, нефтегазовое, или газовое, или газоконденсатное месторождение.

Как известно, CO2 является коррозионно-активным газом. Поэтому, чтобы предотвратить преждевременный выход из строя скважинного оборудования необходимо провести превентивные мероприятия, такие как, например: выбор коррозионно-устойчивого материала для изготовления скважинного оборудования, подача ингибитора коррозии в ствол скважины в процессе закачки CO2 в пласт. Широко используемый вид труб для закачки углекислого газа выполнен из высокоуглеродистой стали с полимерным покрытием или из стекловолокна с цементно-песчаным покрытием. Все наземное оборудование, на котором осуществляется подготовка газообразного CO2 к закачке в жидком состоянии в пласт, а также все соединительные и подводящие коммуникации, по которым осуществляется подача сжиженного CO2, должны быть выполнены из материалов, устойчивых к воздействию CO2.

В случае использования для хранения CO2 ловушки (1) (Фиг. 2, 3) водоносных пластов закачку жидкого CO2 осуществляют в центральные скважины (3), пробуренные в купольной части месторождения. Температура внутри ловушки равна температуре, при которой CO2 находится в жидком агрегатном состоянии, то есть от 0°C до 30°C (см. Фиг. 1). Давление в ловушке равно давлению, обеспечивающему длительное захоронение жидкого CO2, то есть от 40 бар и выше (см. Фиг. 1) По мере опускания контакта «жидкий CO2-вода» к закачке подключают скважины (4), отдаленные от купольной части, при этом осуществляют контроль динамики пластового давления посредством глубинных манометров, спускаемых на забой скважины, или путем измерения устьевого давления, по которому расчетным способом определяют пластовое давление. Одновременно проводят мониторинг появления жидкого CO2 в наблюдательных скважинах, расположенных вблизи замыкающей изогипсы (5) (Фиг. 5) ловушки. При этом в случае обнаружения жидкого CO2 в наблюдательных скважинах его закачку сразу прекращают.

В случае использования для хранения CO2 ловушки (1) истощенного месторождения углеводородов (см. Фиг. 4) выбирают ловушку, пластовая температура в которой равна температуре, при которой CO2 находится в ловушке в жидком агрегатном состоянии, то есть от 0°C до 30°C, а проектное значение пластового давления равно давлению, обеспечивающему длительное захоронение жидкого CO2, то есть от 40 бар и выше (см. Фиг. 1). Затем бурят скважины (3) в купольной части структуры ловушки, после чего начинают закачивать в них газообразный CO2, в ходе чего осуществляют контроль динамики пластового давления посредством глубинных манометров, спускаемых на забой скважины, или путем измерения устьевого давления, по которому расчетным способом определяют пластовое давление. При достижении давления в ловушке значения, соответствующего указанному выше давлению, при котором CO2 находится в ловушке в жидком агрегатном состоянии, продолжают закачку CO2 уже в жидком агрегатном состоянии непосредственно в приконтактные зоны ловушки (2), осуществляя контроль динамики пластового давления глубинными манометрами с одновременным мониторингом появления жидкого CO2 в наблюдательных скважинах, расположенных вблизи замыкающей изогипсы (5) (Фиг. 5) ловушки (1), при этом закачка жидкого CO2 прекращается в тех же случаях, что описаны выше в случае закачки CO2 в ловушку водоносного пласта.

Кроме того, закачку останавливают при достижении давления в ловушке как водоносного пласта, так и истощенного месторождения углеводородов, соответствующего максимально допустимому пластовому давлению.

При технологических расчетах по созданию и эксплуатации подземных хранилищ газа в случае водоносного пласта указанное максимально допустимое пластовое давление принимается в пределах Рmax=(0,12-0,17)Но в зависимости от глубины Но залегания пласта (свода поднятия).

В случае истощенного месторождения углеводородов для оценки максимального давления широкое применение находит методика гидроразрыва пласта. Герметичность покрышки оценивается по возможности исключения образования вертикальных трещин или раскрытия имеющихся. Герметичность покрышки определяется исходя из зависимости:

где ΔР - допустимое превышение начального пластового давления в геологической структуре, (МПа);

- боковое горное давление для покрышки, МПа;

- боковое горное давление для коллектора геологической структуры, МПа;

Pгор=γН - горное давление, МПа;

γ - плотность горных пород, т/м3;

Н - глубина залегания геологической структуры, м;

hк, hn - толщина коллектора и покрышки, соответственно, м.

(А.С. Гарайшин. Обоснование максимально допустимых давлений при проектировании и эксплуатации ПХГ. М.: ВНИИГАЗ. Сборник научных трудов «Подземное хранение газа. Проблемы и перспективы», 2003. С. 180-183.)

Как в случае захоронения CO2 в водоносном пласте, так и при захоронении в истощенном месторождении углеводородов контроль за герметичностью по латерали (горизонтали) ловушки осуществляется посредством наблюдательных скважин, расположенных вблизи замыкающей изогипсы (5) (Фиг. 5) ловушки, а по вертикали ловушки - посредством расположенных на вышезалегающих горизонтах контрольных скважин (7) (Фиг. 6).

Расположение и наличие контрольных горизонтов зависит от агрегатного состояния CO2 в пластовых условиях и от соотношения плотности жидкого CO2 и плотности пластовой воды в пластовых условиях. Если плотность CO2 в жидком состоянии в пластовых условиях превышает плотность пластовой воды, то выбирать контрольные горизонты необходимо под подошвой пласта-коллектора. Если плотность CO2 в жидком состоянии в пластовых условиях меньше плотности пластовой воды, то мониторинг миграции жидкого CO2 будет осуществляться сетью наблюдательных скважин, расположенных вблизи замыкающей изогипсы (5) (Фиг. 5) ловушки.

В случае если скважина вскрывает малопроницаемые участки пласта, необходимо регулировать темпы закачки жидкого CO2 для предотвращения превышения давления в прискважинной зоне над максимально допустимым давлением для предотвращения разрушения покрышки.

Указанный способ захоронения вредных газов позволяет значительно снизить затраты на обустройство объектов хранения вредных газов именно за счет подземного хранения их в структуре с термобарическими характеристиками, при которых захораниваемое вещество находится в структуре в том агрегатном состоянии, в котором на долгий срок исключается его утечка, что также положительно влияет на состояние окружающей среды.


СПОСОБ ЗАХОРОНЕНИЯ CO (ВАРИАНТЫ)
СПОСОБ ЗАХОРОНЕНИЯ CO (ВАРИАНТЫ)
СПОСОБ ЗАХОРОНЕНИЯ CO (ВАРИАНТЫ)
Источник поступления информации: Роспатент

Показаны записи 91-100 из 171.
04.04.2018
№218.016.3179

Способ частичного сжижения природного газа

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают,...
Тип: Изобретение
Номер охранного документа: 0002645095
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31dc

Способ крепления продуктивного пласта-коллектора газовой скважины

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления...
Тип: Изобретение
Номер охранного документа: 0002645233
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.36bd

Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную...
Тип: Изобретение
Номер охранного документа: 0002646525
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.38af

Способ определения трещинной пористости горных пород

Изобретение относится к области геофизики и может быть использовано для определения трещинной пористости горных пород. Способ определения трещинной пористости горных пород включает в себя экспериментальное определение скорости (Vp) распространения упругой продольной волны каждого образца в...
Тип: Изобретение
Номер охранного документа: 0002646956
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.4b1a

Катионный буровой раствор для бурения неустойчивых глинистых пород

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - повышение эффективности бурения, улучшение фильтрационных свойств...
Тип: Изобретение
Номер охранного документа: 0002651652
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b48

Термостойкий поликатионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород в терригенных и солевых отложениях в условиях воздействия высоких температур. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002651657
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4f50

Способ оценки качества цементирования скважины в низкотемпературных породах

Изобретение относится к газовой и нефтяной промышленности и может быть использовано при освоении северных месторождений углеводородов, в частности при контроле теплоизолирующей способности теплоизолированной колоны (ТОК) и оценке качества цементирования скважин, пробуренных в районах...
Тип: Изобретение
Номер охранного документа: 0002652777
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.534e

Резервуар для хранения криогенной жидкости

Изобретение относится к криогенной технике, в частности к криогенному емкостному оборудованию, и может быть использовано для хранения и транспортирования сжиженного природного газа под повышенным давлением. Резервуар для хранения криогенной жидкости состоит из внутреннего сосуда, кожуха и...
Тип: Изобретение
Номер охранного документа: 0002653611
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.555c

Подводная атомная газоперекачивающая станция

Изобретение относится к области подводного обустройства морских нефтегазовых месторождений и предназначено для транспортировки природного газа по подводным трубопроводам. Подводная атомная газоперекачивающая станция содержит первый и второй контуры производства и использования пара, систему...
Тип: Изобретение
Номер охранного документа: 0002654291
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5855

Способ определения потерь газа при эксплуатации подземных хранилищ газа

Изобретение относится к газодобывающей промышленности и может использоваться при эксплуатации подземных хранилищ газа (ПХГ). Техническим результатом является повышение точности учета газа в хранилище, надежности ПХГ и обеспечение проектных показателей при эксплуатации ПХГ. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002655090
Дата охранного документа: 23.05.2018
Показаны записи 91-100 из 108.
04.04.2018
№218.016.30d4

Способ исследования скважин при кустовом размещении

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при проведении газогидродинамических исследований и эксплуатации газовых, газоконденсатных и нефтяных скважин. Технический результат изобретения - расширение функциональных возможностей, заключающихся в...
Тип: Изобретение
Номер охранного документа: 0002644997
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3179

Способ частичного сжижения природного газа

Изобретение относится к области сжижения газов и их смесей и может быть применено для частичного сжижения в каскадных установках на газораспределительных станциях (ГРС) магистральных газопроводов. Отбирают поток природного газа из магистрального газопровода на ГРС, предварительно осушают,...
Тип: Изобретение
Номер охранного документа: 0002645095
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.31dc

Способ крепления продуктивного пласта-коллектора газовой скважины

Изобретение относится к газовой промышленности, в частности к способам повышения продуктивности эксплуатационных скважин подземных хранилищ газа и снижения водонасыщенности призабойной зоны пласта с использованием физико-химических методов воздействия на пласт-коллектор. В способе крепления...
Тип: Изобретение
Номер охранного документа: 0002645233
Дата охранного документа: 19.02.2018
04.04.2018
№218.016.36bd

Способ определения параметров осколочного поражения при авариях на объектах с обращением сжатого газа

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон возможных разрушений и поражений человека осколками при авариях на объектах с обращением сжатого газа. Изобретение позволяет определять максимальную...
Тип: Изобретение
Номер охранного документа: 0002646525
Дата охранного документа: 05.03.2018
01.03.2019
№219.016.cb13

Буровой раствор

Изобретение относится к области нефтяной и газовой промышленности, а именно к буровым растворам для вскрытия продуктивного пласта-коллектора. Технический результат изобретения состоит в создании бурового раствора с регулируемой плотностью без твердой фазы для качественного вскрытия...
Тип: Изобретение
Номер охранного документа: 0002344153
Дата охранного документа: 20.01.2009
01.03.2019
№219.016.cb17

Буровой раствор

Изобретение относится к области нефтяной и газовой промышленности, а именно к буровым растворам для вскрытия продуктивного пласта-коллектора. Технический результат изобретения состоит в создании бурового раствора с регулируемой плотностью без твердой фазы, сохраняющего свои реологические...
Тип: Изобретение
Номер охранного документа: 0002344152
Дата охранного документа: 20.01.2009
01.03.2019
№219.016.cf92

Способ переобвязки устья скважины, оборудованной дополнительной колонной (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам переобвязки устья скважины. Демонтируют устьевое оборудование до колонной головки КГ с установкой в дополнительной колонне ДК цементного моста. Отрезают и удаляют часть нулевого патрубка и осаживают КГ с...
Тип: Изобретение
Номер охранного документа: 0002433247
Дата охранного документа: 10.11.2011
19.04.2019
№219.017.308c

Способ получения ксантанового загустителя "сараксан" или "сараксан-т"

Изобретение относится к области фармакологии и касается улучшенного способа получения ксантанового загустителя для лекарственных средств, а также технических целей путем культивирования штаммов-продуцентов Xanthomonas campestris на питательной среде, содержащей источник углеродного питания,...
Тип: Изобретение
Номер охранного документа: 0002323005
Дата охранного документа: 27.04.2008
27.04.2019
№219.017.3d16

Способ заканчивания и эксплуатации скважины подземного хранилища газа

Изобретение относится к газовой отрасли и может быть использовано при создании и эксплуатации подземных хранилищ газа (ГГХГ). Способ заканчивания и эксплуатации скважины ПХГ заключается в том, что осуществляют бурение до кровли продуктивного пласта, спуск и цементирование эксплуатационной...
Тип: Изобретение
Номер охранного документа: 0002686259
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.41f8

Способ создания малопроницаемого экрана в пористой среде при подземном хранении газа

Изобретение относится к способу создания малопроницаемого экрана в пористой среде при подземном хранении газа в пористых пластах-коллекторах и может быть использовано в нефтегазодобывающей промышленности. В нагнетательные скважины закачивают раствор пенообразователя до появления его в...
Тип: Изобретение
Номер охранного документа: 0002375281
Дата охранного документа: 10.12.2009
+ добавить свой РИД