×
27.04.2016
216.015.391f

Результат интеллектуальной деятельности: СИСТЕМА ТОЧНОЙ НАВИГАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ НАЗЕМНОЙ ИНФРАСТРУКТУРЫ ГЛОНАСС

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Технический результат состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени. Для этого в системе точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, включающей спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта, в качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция, расположенная на расстоянии 4 км 300 метров от соответствующего подвижного объекта, в качестве телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС. 1 ил.
Основные результаты: Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, включающая спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта, отличающаяся тем, что в качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция, расположенная на расстоянии 4 км 300 метров от соответствующего подвижного объекта, в качестве вышеупомянутого телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы вышеупомянутых глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, в вышеупомянутом блоке обработки совместной информации, поступающей с базовой станции и подвижного объекта, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС.

Предложенное изобретение относится к области радионавигации, спутниковой навигации, геодезии и может быть использовано для навигации подвижных объектов в режиме реального времени.

Известна система мониторинга подвижных объектов (Рушкевич А., Осадчий В. Мониторинг подвижных объектов: российские реалии и технические инновации [Текст] / А. Рушкевич, В. Осадчий // Беспроводные технологии. - 2010. - №3. - С. 56-60), состоящая из телеметрического терминала, выполняющего следующие функции:

- определения координат подвижного объекта в автономном (абсолютном) методе при помощи спутникового ГЛОНАСС/GPS приемника,

- сбора информации от бортового оборудования и дополнительных датчиков,

- пересылки информации по каналам связи в диспетчерский сервер.

Кроме телеметрического терминала, в предложенную систему входит диспетчерский сервер, представляющий собой программное обеспечение, для обеспечения клиентов объективной информацией о местонахождении подвижного объекта в данный момент времени.

Данная система обладает следующим недостатками:

- в системе мониторинга подвижных объектов в качестве телеметрического терминала выступает одночастотный двухсистемный кодовый ГЛОНАСС/GPS модуль, принимающий только сигналы стандартной точности от спутников глобальных навигационных систем (ГЛОНАСС/GPS), поэтому погрешность определения местоположения подвижного объекта в данной системе составляет 5-10 метров в системе координат WGS - 84 [Антонович К.М. Использование спутниковых радионавигационных систем в геодезии [Текст] / К.М. Антонович // ГОУ ВПО «Сибирская государственная геодезическая академия». - М: ФГУП «Картгеоцентр», 2006. - 360 с.],

- в системе мониторинга подвижных объектов не вводится корректирующая информация, получаемая от базовой станции, имеющей точные координаты в системе координат WGS - 84, в местоположение подвижного объекта,

- в системе мониторинга подвижных объектов отсутствует блок обработки совместной информации, поступающей с базовой станции и подвижного объекта.

Наиболее близкой системой того же назначения к заявляемой по совокупности признаков является система определения местоположения подвижных объектов в режиме реального времени (Пат. 2444705 Российская Федерация МПК51 GO1C 21/24 Система определения местоположения подвижных объектов в режиме реального времени [Текст] / И. А. Лукин, С.В. Мельников; заявители и патентообладатели: Открытое акционерное общество «СУПЕРТЕЛ». - 2010146177, заявл. 08.11.2010, опубл. 10.03.2012 - Бюл. №7. - 7 с.), состоящая из спутников глобальных навигационных систем, диспетчерской станции, содержащей геоинформационную систему, базовой станции, подвижных объектов, оснащенных телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта.

Недостатками технического решения, принятого за прототип, являются:

- в системе мониторинга подвижных объектов в качестве телеметрического терминала выступает одночастотный двухсистемный кодовый ГЛОНАСС/GPS модуль, принимающий только сигналы стандартной точности от спутников глобальных навигационных систем (ГЛОНАСС/GPS), поэтому погрешность определения местоположения подвижного объекта с использованием корректирующей информации от диспетчерской станции, имеющей точные координаты в системе координат WGS - 84, будет иметь величину, равную 1-2 метра [Антонович К.М. Использование спутниковых радионавигационных систем в геодезии [Текст] / К.М. Антонович // ГОУ ВПО «Сибирская государственная геодезическая академия». - М.: ФГУП «Картгеоцентр», 2006. - 360 с.],

- в качестве базовых станций в системе определения местоположения подвижных объектов в режиме реального времени выступают базовые станции вышек сотовой связи, координаты которых определяются в системе координат WGS - 84 с погрешностью, равной 1 метр [Пат. 2331082 Российская Федерация МПК51 G01S 5/02, H04B 7/26 Использование мобильных станций для определения параметров местоположения базовой станции в системе беспроводной мобильной связи [Текст] / У. Райли, Р. Джирерд, З. Биакс; заявители и патентообладатели: КВЭЛКОМ ИНКОРПОРЕЙТЕД. - 2004122913, заявл. 20.04.2005, опубл. 10.08.2008 - Бюл. №2. - 28 с.], в связи с чем, заявляемая в прототипе дециметровая точность определения местоположения подвижного объекта путем уточнения его методом триангуляции от не менее трех базовых станций вышек сотовой связи не может быть достигнута,

- в блоке обработки совместной информации, поступающей с базовой станции и подвижного объекта, не вводятся региональные модели ионосферы и тропосферы.

Техническая задача, решаемая предлагаемой системой точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, заключается в повышении точности и надежности определения местоположения (координат) подвижных объектов в режиме реального времени.

Поставленная задача достигается тем, что в системе точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, включающей спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта, согласно изобретению в ней в качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция, расположенная на расстоянии 4 км 300 метров от соответствующего подвижного объекта, в качестве вышеупомянутого телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы вышеупомянутых глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, в вышеупомянутом блоке обработки совместной информации, поступающей с базовой станции и подвижного объекта, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС.

Предлагаемое изобретение поясняется схемой, представленной на фиг. 1, где:

1 - спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO);

2 - двухчастотные мультисистемные ГНСС приемники, принимающие сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO);

3 - оптоволоконные каналы связи;

4 - локальная сеть Интернет;

5 - сервер сбора информации с двухчастотных мультисистемных ГНСС приемников, принимающих сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO);

6 - персональный компьютер с сетевым программным обеспечением;

7 - наземная инфраструктура ГЛОНАСС;

8 - одночастотный двухсистемный кодо-фазовый чип, принимающий сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO);

9 - блок обработки информации, поступающей с наземной инфраструктуры ГЛОНАСС и одночастотного двухсистемного кодо-фазового чипа, подключенного к малогабаритному атомному стандарту частоты;

10 - малогабаритные атомные стандарты частоты;

11 - телекоммуникационное оборудование, для приема и передачи данных между устройством точной навигации и наземной инфраструктурой ГЛОНАСС;

12 - телекоммуникационное оборудование, для передачи данных между устройством точной навигации и диспетчерской станцией;

13 - устройство точной навигации;

14 - сервер диспетчерской станции;

15 - персональный компьютер с геоинформационной системой;

16 - диспетчерская станция;

17 - приближенные координаты подвижного объекта;

18 - корректирующая информация, сгенерированная сетевым программным обеспечением;

19 - региональные модели тропосферы и ионосферы, сгенерированные сетевым программным обеспечением;

20 - точные координаты подвижного объекта.

Предлагаемая система работает следующим образом.

Каждый из устройств точной навигации 13, установленный на подвижном объекте, принимает сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO) 1 с помощью одночастотного двухсистемного кодо-фазового чипа 8, подключенного к малогабаритному атомному стандарту частоты 10. Принятые одночастотным двухсистемным кодо-фазовым чипом 8, подключенным к малогабаритному атомному стандарту частоты 10, сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO) поступают в блок обработки информации 9, в котором происходит вычисление приближенных координат подвижного объекта в системе WGS-84, на основе абсолютного метода ГНСС - позиционирования путем решения обратной линейной засечки. Эти координаты передаются с помощью телекоммуникационного оборудования 11, установленного на подвижном объекте, по широкополосному радиодоступу на сервер сбора информации с двухчастотных мультисистемных ГНСС приемников, принимающих сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), 5 наземной инфраструктуры ГЛОНАСС 7.

Сетевое программное обеспечение, установленное на персональном компьютере, 6 по средствам локальной сети Интернет 4 соединяется с сервером сбора информации с двухчастотных мультисистемных ГНСС приемников, принимающих сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO) 5, для получения приближенных координат подвижного объекта в режиме реального времени. Сетевое программное обеспечение, установленное на персональном компьютере 6, на основе приближенных координат подвижного объекта 17 и данных наземной инфраструктуры ГЛОНАСС 7 генерирует виртуальную базовую станцию, расположенную на расстоянии 4 км 300 метров от соответствующего подвижного объекта, и рассчитывает для каждого подвижного объекта корректирующую информацию 18 и региональные модели тропосферы и ионосферы 19.

Для расчета корректирующей информации 18 и региональной модели тропосферы и ионосферы 19 с помощью наземной инфраструктуры ГЛОНАСС 7 в сетевое программное обеспечение 6 из сервера сбора информации 5 поступает измерительная информация, полученная по средствам оптоволоконного канала связи 3, от двухчастотных мультисистемных ГНСС приемников 2, принимающих сигналы спутников глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO) 1.

Корректирующая информация 18 и региональные модели тропосферы и ионосферы 19, сгенерированные сетевым программным обеспечением, передаются в устройство точной навигации 13, где регистрируются телекоммуникационным оборудованием 11, установленным на подвижном объекте. Затем корректирующая информация 18, региональные модели тропосферы и ионосферы 19, а также измерительная информация с одночастотного двухсистемного кодо-фазового чипа 8, подключенного к малогабаритному атомному стандарту частоты 10, поступают в блок обработки информации 9, в котором происходит вычисление точных координат 20 подвижного объекта в системе WGS-84. Вычисленные блоком обработки информации 9 точные координаты 20 подвижного объекта в системе WGS-84 передаются с помощью телекоммуникационного оборудования 12 в диспетчерскую станцию 16. Точные координаты 20 подвижного объекта в системе WGS-84 хранятся на сервере диспетчерской станции 16. С сервера диспетчерской станции 16 точные координаты передаются в геоинформационную систему, установленную на персональном компьютере 15, в которой визуализируется местоположение подвижного объекта.

Технический результат, достигаемый заявляемой системой точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, заключается в повышении достоверности информации о местоположении подвижного объекта в режиме реального времени.

При всей совокупности заявляемых признаков система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС может обеспечить погрешность определения местоположения подвижного объекта до 0,1 м.

Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры ГЛОНАСС, включающая спутники глобальных навигационных систем (ГЛОНАСС, GPS, GALILEO), диспетчерскую станцию, содержащую геоинформационную систему, базовую станцию, подвижные объекты, оснащенные телеметрическими терминалами, на которых установлено телекоммуникационное оборудование, обеспечивающее соединение базовой станции с подвижными объектами посредством широкополосного радиодоступа, блок обработки совместной информации, поступающей с базовой станции и подвижного объекта, отличающаяся тем, что в качестве базовой станции используется сгенерированная сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС виртуальная базовая станция, расположенная на расстоянии 4 км 300 метров от соответствующего подвижного объекта, в качестве вышеупомянутого телеметрического терминала в системе используется устройство точной навигации, созданное на базе одночастотного двухсистемного кодо-фазового чипа, принимающего сигналы вышеупомянутых глобальных навигационных спутниковых систем, подключенного к малогабаритному атомному стандарту частоты, в вышеупомянутом блоке обработки совместной информации, поступающей с базовой станции и подвижного объекта, введены региональные модели ионосферы и тропосферы, созданные в режиме реального времени, генерируемые сетевым программным обеспечением на основе данных наземной инфраструктуры ГЛОНАСС.
СИСТЕМА ТОЧНОЙ НАВИГАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ НАЗЕМНОЙ ИНФРАСТРУКТУРЫ ГЛОНАСС
СИСТЕМА ТОЧНОЙ НАВИГАЦИИ ПОДВИЖНЫХ ОБЪЕКТОВ С ИСПОЛЬЗОВАНИЕМ ДАННЫХ НАЗЕМНОЙ ИНФРАСТРУКТУРЫ ГЛОНАСС
Источник поступления информации: Роспатент

Показаны записи 21-21 из 21.
20.01.2018
№218.016.0ff9

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга оперативной обстановки паводковой ситуации с применением технологии дистанционного зондирования

Изобретение относится к способам геодезического мониторинга и может быть использовано для геодезического мониторинга паводковой ситуации. Сущность: на контролируемом участке создают планово-высотное обоснование (ПВО) по координатам X, Y, Z спутниковой привязки опознавательных знаков. Выполняют...
Тип: Изобретение
Номер охранного документа: 0002633642
Дата охранного документа: 16.10.2017
Показаны записи 21-30 из 30.
20.01.2018
№218.016.0ff9

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга оперативной обстановки паводковой ситуации с применением технологии дистанционного зондирования

Изобретение относится к способам геодезического мониторинга и может быть использовано для геодезического мониторинга паводковой ситуации. Сущность: на контролируемом участке создают планово-высотное обоснование (ПВО) по координатам X, Y, Z спутниковой привязки опознавательных знаков. Выполняют...
Тип: Изобретение
Номер охранного документа: 0002633642
Дата охранного документа: 16.10.2017
10.05.2018
№218.016.47c6

Способ аэрокосмического геоинформационного мониторинга природных и техногенных объектов с применением метода вейвлет-преобразования для аэрокосмических цифровых фотоснимков

По предлагаемому способу аэрокосмического геоинформационного мониторинга природных и техногенных объектов производят аэрокосмическую цифровую фотосъемку заданной территории не менее двух раз с помощью одной и той же съемочной аэрокосмической системы с привязкой к заданной системе координат ПВО....
Тип: Изобретение
Номер охранного документа: 0002650700
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4f63

Способ геодезического геоинформационного мониторинга природных и техногенных объектов с применением метода автоматизированного дешифрирования многоспектральных цифровых аэрокосмических фотоснимков

Изобретение относится к способам обработки многоспектральных цифровых аэрокосмических фотоснимков и может быть использовано при геодезическом геоинформационном мониторинге природных и техногенных объектов. Сущность: на контролируемом участке выполняют аэрокосмическую цифровую фотосъемку с...
Тип: Изобретение
Номер охранного документа: 0002652652
Дата охранного документа: 28.04.2018
04.10.2018
№218.016.8f0f

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга деформационного состояния инженерного объекта

Изобретение относится к области создания трехмерных цифровых моделей. Технический результат – повышение достоверности и точности получаемых геопространственных данных за счет использования технологий лазерного сканирования в трехмерном пространстве. Способ получения, обработки, отображения и...
Тип: Изобретение
Номер охранного документа: 0002668730
Дата охранного документа: 02.10.2018
03.03.2019
№219.016.d244

Способ геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах с применением технологии лазерного сканирования

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты. Технический результат: повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002680978
Дата охранного документа: 01.03.2019
04.06.2019
№219.017.7290

Способ формирования заданных параметров кривизны модифицированного двуслойного трансплантата с ворсинчатой поверхностью для лечения прогрессирующей близорукости

Изобретение относится к медицине, а именно к офтальмологии. Предложен способ моделирования кривизны двуслойного трансплантата с ворсинчатой поверхностью для лечения прогрессирующей близорукости. Трансплантат, состоящий из лоскута прямоугольной формы с закругленными краями размером 20×10×0,6 мм,...
Тип: Изобретение
Номер охранного документа: 0002690411
Дата охранного документа: 03.06.2019
29.08.2019
№219.017.c440

Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга. Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений...
Тип: Изобретение
Номер охранного документа: 0002698411
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dc68

Способ геодинамического мониторинга за смещениями блоков верхней части земной коры и деформационного состояния земной поверхности с применением технологии высокоточного спутникового позиционирования глобальной навигационной спутниковой системы (гнсс) глонасс /gps

Изобретение относится к области геодезических измерений. Технический результат - повышение точности и достоверности способа обработки геодезических измерений за счёт получения максимально точных значений пространственных координат опорных пунктов планово-высотной основы (ПВО) и наблюдательной...
Тип: Изобретение
Номер охранного документа: 0002704730
Дата охранного документа: 30.10.2019
10.04.2020
№220.018.13b1

Способ создания и использования в интерактивном режиме источника геопространственной информации в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области картографии, обработки и отображения геопространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения и может быть использовано для получения геопространственной информации об объектах местности при работе в...
Тип: Изобретение
Номер охранного документа: 0002718472
Дата охранного документа: 08.04.2020
24.07.2020
№220.018.3749

Способ создания аудиотактильного источника картографической информации с применением цифровых информационных и нанотехнологий и его использования в активном режиме незрячими или слабовидящими людьми

Изобретение относится к области обработки и отображения, компьютерным средствам преобразования, а затем чтения картографической информации незрячими или слабовидящими людьми, дающее пользователям с дефектами зрения возможность замены прямого зрительного восприятия другими видами восприятия, а...
Тип: Изобретение
Номер охранного документа: 0002727558
Дата охранного документа: 22.07.2020
+ добавить свой РИД