×
20.04.2016
216.015.35c5

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата, сушат и проводят последующую термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. Способ является технологически простым и позволяет эффективно наносить серебросодержащее гидроксиапатитовое покрытие с бактерицидными свойствами на металлические имплантаты. 2 пр.
Основные результаты: Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические внутрикостные и чрескостные имплантаты.

Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биосовместимых металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костной ткани за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является газотермическое напыление, заключающееся в пропускании порошка гидроксиапатита через высокотемпературную область частично ионизированного газа, нагревании, плавлении и придании кинетической энергии частицам порошка с последующим их осаждением на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия наиболее широко распространенным газотермическим (плазменным) методом является технологически сложным процессом и характеризуется низким коэффициентом использования порошка, т.е. низкой технико-экономической эффективностью. При этом данный метод не позволяет наносить биокерамические гидроксиапатитовые покрытия, содержащие серебро в качестве бактерицидного компонента, служащего для повышения уровня приживляемости имплантатов.

Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].

Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия на имплантаты, а также отсутствие технической возможности получения серебросодержащего покрытия с бактерицидными свойствами.

Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600°С [патент РФ №2158189, МПК B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].

Недостатком данного способа является отсутствие технической возможности получения серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоно-плазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.

Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования, а также отсутствие технической возможности, обеспечивающей получение серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Задачей изобретения является создание технологически простого и эффективного способа нанесения серебросодержащего гидроксиапатитового покрытия на металлические имплантаты.

Технический результат изобретения заключается в обеспечении бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов, а также в создании технологически простых условий нанесения серебросодержащего гидроксиапатитового покрытия.

Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению, в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. При этом происходит эффективный нагрев поверхности имплантата с нанесенной суспензией, состоящей из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, до температуры 900-950°С, обеспечивающей формирование биокерамического покрытия путем плавления фосфатной связки и протекания твердофазных превращений с получением механической смеси, обладающей бактерицидными свойствами.

Сущность изобретения заключается в следующем.

Получение биокерамического покрытия на металлических имплантатах осуществляют путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Данные условия позволяют технологически просто и эффективно формировать на поверхности металлических имплантатов механически прочное биокерамическое покрытие на основе гидроксиапатита, содержащее в качестве бактерицидного компонента наночастицы серебра.

При этом порошок гидроксиапатита смешивают со связующим веществом, содержащим наночастицы серебра, для предварительного удержания частиц гидроксиапатитового порошка и серебра на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного эффективного плавления фосфатной связки и протекания твердофазных превращений с получением биокерамического покрытия из механической смеси, обладающей бактерицидными свойствами.

Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с наночастицами серебра для придания поверхности имплантатов бактерицидных свойств.

Содержание в суспензии из фосфатной связки и порошка гидроксиапатита наночастиц серебра в пределах соотношения суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 является наиболее эффективным для придания биокерамическому покрытию бактерицидных свойств. При содержании наночастиц серебра в суспензии меньше указанного нижнего предела соотношения не позволяет получить покрытие с выраженной бактерицидной активностью, а содержание наночастиц серебра в суспензии больше указанного верхнего предела соотношения является экономически нецелесообразным, т.к. при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 достигаются наилучшие медико-технические условия безопасного и ускоренного приживления имплантатов с гидроксиапатитовыми покрытиями.

Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах с нанесенной суспензией из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, при значениях потребляемой электрической мощности менее 0,20 кВт, частоте тока на индукторе ниже диапазона 90±10 кГц и продолжительности термообработки менее 1,0 мин является не эффективным, т.к. образующееся покрытие склонно к механическому разрушению при действии функциональных нагрузок на имплантат.

Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,25 кВт, частоте тока на индукторе свыше 90±10кГц и продолжительности термообработки более 1,5 мин приводит к нежелательным фазовым и структурным превращениям серебра в составе биокерамического покрытия, что, в результате, существенно снижает его бактерицидные свойства (происходит агрегация наночастиц серебра в более крупные микрометровые частицы с меньшей бактерицидной активностью).

Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 900-950°С, что обеспечивает необходимое термическое воздействие на суспензию из фосфатной связки, порошка гидроксиапатита и наночастиц серебра для получения прочного биокерамического покрытия с бактерицидными свойствами.

Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0:0,03. С помощью кисти или путем окунания полученную серебросодержащую суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной серебросодержащей суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,20 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,5 мин. При этом температура нагрева имплантата составляет 900°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее высокими биоактивными и бактерицидными свойствами.

Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,1:0,01. С помощью кисти или путем окунания суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 950°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее наряду с биологической активностью высокими бактерицидными свойствами.

Положительный эффект предлагаемого изобретения - обеспечение бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов - заключается в создании технологически простых и эффективных условий нанесения серебросодержащего гидроксиапатитового покрытия, при которых осуществляют смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, которую затем наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.
Источник поступления информации: Роспатент

Показаны записи 161-170 из 174.
09.03.2020
№220.018.0a81

Способ работы водогрейной котельной

Изобретение относится к области тепловой энергетики. Способ работы водогрейной котельной заключается в том, что поток горячей воды на выходе из водогрейного котла разделяется на две части: одна часть теплоносителя направляется в подающую линию тепловой сети в количестве, необходимом для...
Тип: Изобретение
Номер охранного документа: 0002716202
Дата охранного документа: 06.03.2020
14.03.2020
№220.018.0bb0

Установка для утилизации снега на базе водогрейного котла

Изобретение относится к области тепловой энергетики. Установка для утилизации снега на базе водогрейного котла, предназначенного для отопления и горячего водоснабжения в составе сезонной котельной, устанавливаемая на верхней плите канала для подземной прокладки короба уходящих газов, содержит...
Тип: Изобретение
Номер охранного документа: 0002716519
Дата охранного документа: 12.03.2020
26.03.2020
№220.018.1008

Состав смеси для изготовления легкого бетона

Изобретение относится к области производства строительных материалов, в частности к производству легких бетонов. Бетонная смесь для легкого бетона включает, мас.%: портландцемент - 17,0-19,0, кремнистую опоку с модулем крупности М 1,8-2,0 - 60,2-64,75, крошку, образующуюся в процессе обрезки...
Тип: Изобретение
Номер охранного документа: 0002717502
Дата охранного документа: 24.03.2020
26.03.2020
№220.018.104d

Оборудование для возведения буронабивных свай

Изобретение относится к области строительства, а именно к буровым установкам, используемым для возведения буронабивных свай. Оборудование для возведения буронабивных свай, включающее телескопическую мачту с направляющими роликами для перемещения ее секций, кронштейн, шарнирно соединяющий...
Тип: Изобретение
Номер охранного документа: 0002717550
Дата охранного документа: 24.03.2020
01.05.2020
№220.018.1a95

Способ получения коррозионностойкого электрохимического покрытия цинк-никель-кобальт

Изобретение относится к области гальваностегии, в частности к процессам электрохимического осаждения покрытия Zn-Ni-Co, и может быть использовано в производстве конструкционных коррозионностойких материалов для эксплуатации в агрессивных средах. Способ включает электроосаждение...
Тип: Изобретение
Номер охранного документа: 0002720269
Дата охранного документа: 28.04.2020
18.07.2020
№220.018.33ea

Винтовой бур для образования скважин в мерзлых грунтах

Изобретение относится к производству земляных работ, в частности к устройствам для образования скважин. Винтовой бур для образования скважин в мерзлых грунтах содержит конический сердечник с винтовой лопастью, состоящей из конического участка с постоянным шагом витков лопасти и цилиндрического...
Тип: Изобретение
Номер охранного документа: 0002726751
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.342c

Винтовой бур для мерзлых грунтов

Изобретение относится к производству земляных работ, в частности к устройствам для образования скважин. Техническим результатом является снижение энергоемкости бурения скважин в прочных и мерзлых грунтах, в том числе в мерзлом песке. Винтовой бур содержит конический сердечник с винтовой...
Тип: Изобретение
Номер охранного документа: 0002726753
Дата охранного документа: 15.07.2020
30.05.2023
№223.018.7320

Способ применения жидкостно-газового инжектора для компримирования и подачи газов с установки гидроочистки в топливную сеть нефтеперерабатывающего завода

Изобретение относится к области нефтепереработки и может быть использовано для эффективного компримирования и использования низконапорных газов на нефтеперерабатывающем заводе. Способ применения жидкостно-газового инжектора для компримирования и подачи газов с установки гидроочистки в топливную...
Тип: Изобретение
Номер охранного документа: 0002770374
Дата охранного документа: 15.04.2022
30.05.2023
№223.018.7349

Способ очистки поверхности изделия от окалины

Изобретение относится к очистке поверхности изделия от окалины. Осуществляют вращение и продольную подачу инструмента в виде диска с установленными в его отверстиях и наклоненными к его оси вращения державками с закрепленными на их концах твердыми пластинами, режущие кромки которых расположены...
Тип: Изобретение
Номер охранного документа: 0002766090
Дата охранного документа: 07.02.2022
30.05.2023
№223.018.7350

Экспериментальная установка для оценки тепловой эффективности газоиспользующего оборудования

Изобретение относится к энергетике и может быть использовано при экспериментальном исследовании тепловой эффективности работы газоиспользующего оборудования. Предложена экспериментальная установка для оценки тепловой эффективности газоиспользующего оборудования, включающая в себя...
Тип: Изобретение
Номер охранного документа: 0002767665
Дата охранного документа: 18.03.2022
Показаны записи 81-81 из 81.
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
+ добавить свой РИД