×
20.04.2016
216.015.35c5

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата, сушат и проводят последующую термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. Способ является технологически простым и позволяет эффективно наносить серебросодержащее гидроксиапатитовое покрытие с бактерицидными свойствами на металлические имплантаты. 2 пр.
Основные результаты: Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические внутрикостные и чрескостные имплантаты.

Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биосовместимых металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костной ткани за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является газотермическое напыление, заключающееся в пропускании порошка гидроксиапатита через высокотемпературную область частично ионизированного газа, нагревании, плавлении и придании кинетической энергии частицам порошка с последующим их осаждением на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия наиболее широко распространенным газотермическим (плазменным) методом является технологически сложным процессом и характеризуется низким коэффициентом использования порошка, т.е. низкой технико-экономической эффективностью. При этом данный метод не позволяет наносить биокерамические гидроксиапатитовые покрытия, содержащие серебро в качестве бактерицидного компонента, служащего для повышения уровня приживляемости имплантатов.

Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].

Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия на имплантаты, а также отсутствие технической возможности получения серебросодержащего покрытия с бактерицидными свойствами.

Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600°С [патент РФ №2158189, МПК B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].

Недостатком данного способа является отсутствие технической возможности получения серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоно-плазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.

Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования, а также отсутствие технической возможности, обеспечивающей получение серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Задачей изобретения является создание технологически простого и эффективного способа нанесения серебросодержащего гидроксиапатитового покрытия на металлические имплантаты.

Технический результат изобретения заключается в обеспечении бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов, а также в создании технологически простых условий нанесения серебросодержащего гидроксиапатитового покрытия.

Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению, в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. При этом происходит эффективный нагрев поверхности имплантата с нанесенной суспензией, состоящей из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, до температуры 900-950°С, обеспечивающей формирование биокерамического покрытия путем плавления фосфатной связки и протекания твердофазных превращений с получением механической смеси, обладающей бактерицидными свойствами.

Сущность изобретения заключается в следующем.

Получение биокерамического покрытия на металлических имплантатах осуществляют путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Данные условия позволяют технологически просто и эффективно формировать на поверхности металлических имплантатов механически прочное биокерамическое покрытие на основе гидроксиапатита, содержащее в качестве бактерицидного компонента наночастицы серебра.

При этом порошок гидроксиапатита смешивают со связующим веществом, содержащим наночастицы серебра, для предварительного удержания частиц гидроксиапатитового порошка и серебра на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного эффективного плавления фосфатной связки и протекания твердофазных превращений с получением биокерамического покрытия из механической смеси, обладающей бактерицидными свойствами.

Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с наночастицами серебра для придания поверхности имплантатов бактерицидных свойств.

Содержание в суспензии из фосфатной связки и порошка гидроксиапатита наночастиц серебра в пределах соотношения суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 является наиболее эффективным для придания биокерамическому покрытию бактерицидных свойств. При содержании наночастиц серебра в суспензии меньше указанного нижнего предела соотношения не позволяет получить покрытие с выраженной бактерицидной активностью, а содержание наночастиц серебра в суспензии больше указанного верхнего предела соотношения является экономически нецелесообразным, т.к. при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 достигаются наилучшие медико-технические условия безопасного и ускоренного приживления имплантатов с гидроксиапатитовыми покрытиями.

Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах с нанесенной суспензией из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, при значениях потребляемой электрической мощности менее 0,20 кВт, частоте тока на индукторе ниже диапазона 90±10 кГц и продолжительности термообработки менее 1,0 мин является не эффективным, т.к. образующееся покрытие склонно к механическому разрушению при действии функциональных нагрузок на имплантат.

Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,25 кВт, частоте тока на индукторе свыше 90±10кГц и продолжительности термообработки более 1,5 мин приводит к нежелательным фазовым и структурным превращениям серебра в составе биокерамического покрытия, что, в результате, существенно снижает его бактерицидные свойства (происходит агрегация наночастиц серебра в более крупные микрометровые частицы с меньшей бактерицидной активностью).

Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 900-950°С, что обеспечивает необходимое термическое воздействие на суспензию из фосфатной связки, порошка гидроксиапатита и наночастиц серебра для получения прочного биокерамического покрытия с бактерицидными свойствами.

Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0:0,03. С помощью кисти или путем окунания полученную серебросодержащую суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной серебросодержащей суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,20 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,5 мин. При этом температура нагрева имплантата составляет 900°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее высокими биоактивными и бактерицидными свойствами.

Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,1:0,01. С помощью кисти или путем окунания суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 950°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее наряду с биологической активностью высокими бактерицидными свойствами.

Положительный эффект предлагаемого изобретения - обеспечение бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов - заключается в создании технологически простых и эффективных условий нанесения серебросодержащего гидроксиапатитового покрытия, при которых осуществляют смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, которую затем наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.
Источник поступления информации: Роспатент

Показаны записи 141-150 из 174.
14.08.2019
№219.017.bf62

Способ реконструкции несанкционированной свалки с преобразованием ее в полигон тбо

Изобретение относится к области строительства и эксплуатации свалок. Способ реконструкции несанкционированной свалки, состоящей из неконтролируемо вывезенных ТБО, с преобразованием ее в полигон включает вертикальную планировку ранее сформированного свалочного тела. По периметру свалочного тела...
Тип: Изобретение
Номер охранного документа: 0002697095
Дата охранного документа: 12.08.2019
27.08.2019
№219.017.c41e

Двухсторонний модульный конфигурируемый рюкзак

Изобретение относится к устройствам для переноса груза, а именно к рюкзакам и ранцам, и наиболее эффективно может быть использовано в быту, в путешествии, а также в армейских и специализированных службах. Техническим результатом изобретения являются сохранение здоровой и правильной осанки...
Тип: Изобретение
Номер охранного документа: 0002698332
Дата охранного документа: 26.08.2019
17.10.2019
№219.017.d67f

Установка нетепловой модификации полимеров в свч электромагнитном поле

Изобретение относится к области техники СВЧ, а именно к СВЧ обработке материалов. Установка нетепловой модификации полимеров в СВЧ электромагнитном поле содержит рабочую камеру КБВ, выполненную виде отрезка прямоугольного волновода сечением 45 мм × 90 мм длиной 1 м с защитными шлюзовыми...
Тип: Изобретение
Номер охранного документа: 0002702897
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d7b6

Комплексная микропроцессорная система мониторинга и управления дуговой защитой и комплектными распределительными устройствами

Изобретение относится к области электротехники, в частности к системам дуговой защиты высоковольтных переключателей и комплектных распределительных шкафов (КРУ). Технический результат заключается в повышении надежности и функциональности системы дуговой защиты, а также стабильности и...
Тип: Изобретение
Номер охранного документа: 0002703279
Дата охранного документа: 16.10.2019
26.10.2019
№219.017.dada

Способ зарядки литий-ионных аккумуляторных батарей из n последовательно соединенных аккумуляторов с подключенными к ним через коммутаторы балансировочными резисторами

Изобретение относится к области электротехники, а именно к способу заряда литий-ионных аккумуляторных батарей, и может быть использовано при эксплуатации литий-ионных аккумуляторных батарей, преимущественно, в качестве элементов питания электротранспортных средств и накопителей интеллектуальных...
Тип: Изобретение
Номер охранного документа: 0002704116
Дата охранного документа: 24.10.2019
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
01.11.2019
№219.017.dc29

Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации

Изобретение относится к диагностическому биомедицинскому оборудованию. Устройство для определения в режиме реального времени степени концентрации внимания оператора при восприятии и обработке информации включает блок регистрации биопотенциалов ЭЭГ, стимулятор, реализованный с возможностью в...
Тип: Изобретение
Номер охранного документа: 0002704562
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dd34

Устройство для создания регулируемой силы тяги в электрическом ионном двигателе

Изобретение относится к ракетной технике, в частности к электрическим ионным двигателям, снабженным устройством для регулирования силы тяги за счет дополнительного ускорения ионов в высокочастотном поле. Устройство для создания регулируемой силы тяги в электрическом ионном двигателе содержит...
Тип: Изобретение
Номер охранного документа: 0002704523
Дата охранного документа: 29.10.2019
07.11.2019
№219.017.dedf

Устройство для измерения полного сопротивления параметрических датчиков

Изобретение относится к области контрольно-измерительной техники и может быть использовано для подключения параметрических датчиков различного типа (резистивных, индуктивных, емкостных, смешанного типа) к генератору сигнала и снятия информативных электрических сигналов для последующей обработки...
Тип: Изобретение
Номер охранного документа: 0002705179
Дата охранного документа: 05.11.2019
01.12.2019
№219.017.e85f

Нагнетатель

Изобретение относится к нагнетательным установкам и может, в частности, использоваться в вентиляторостроении. Нагнетатель содержит корпус 1, включающий цилиндрический статор 2 и боковые плоские стенки, расположенные на статоре 2 патрубки 5 и 6 для впуска и выпуска перемещаемой среды, выпускные...
Тип: Изобретение
Номер охранного документа: 0002707790
Дата охранного документа: 29.11.2019
Показаны записи 81-81 из 81.
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
+ добавить свой РИД