×
20.04.2016
216.015.35c5

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ БИОКЕРАМИЧЕСКОГО ПОКРЫТИЯ НА ИМПЛАНТАТЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине. Описан способ нанесения биокерамического покрытия на имплантатах из биосовместимых металлов и сплавов путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата, сушат и проводят последующую термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. Способ является технологически простым и позволяет эффективно наносить серебросодержащее гидроксиапатитовое покрытие с бактерицидными свойствами на металлические имплантаты. 2 пр.
Основные результаты: Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Изобретение относится к области медицины, а именно к способам нанесения биоактивных гидроксиапатитовых покрытий на металлические внутрикостные и чрескостные имплантаты.

Биокерамическое гидроксиапатитовое покрытие медицинских внутрикостных и чрескостных имплантатов из биосовместимых металлов и сплавов обеспечивает их ускоренное и эффективное приживление в костной ткани за счет высокого уровня биологической активности поверхности. Наиболее распространенной технологией нанесения порошковых гидроксиапатитовых покрытий является газотермическое напыление, заключающееся в пропускании порошка гидроксиапатита через высокотемпературную область частично ионизированного газа, нагревании, плавлении и придании кинетической энергии частицам порошка с последующим их осаждением на поверхность имплантата. Однако нанесение гидроксиапатитового покрытия наиболее широко распространенным газотермическим (плазменным) методом является технологически сложным процессом и характеризуется низким коэффициентом использования порошка, т.е. низкой технико-экономической эффективностью. При этом данный метод не позволяет наносить биокерамические гидроксиапатитовые покрытия, содержащие серебро в качестве бактерицидного компонента, служащего для повышения уровня приживляемости имплантатов.

Известен способ изготовления имплантатов с биокерамическим покрытием (гидроксиапатит, биоситалл), наносимым методом плазменного напыления [патент РФ №2157245, МПК A61L 27/06, A61F 2/28, опубл. 10.10.2000 г.].

Недостатком данного способа является сложность осуществления технологического процесса нанесения биокерамического покрытия на имплантаты, а также отсутствие технической возможности получения серебросодержащего покрытия с бактерицидными свойствами.

Известен способ нанесения гидроксиапатитовых покрытий, включающий смешивание порошка гидроксиапатита со связующим веществом, в качестве которого используют фосфатные связки, взятые в соотношении к порошку 1,0-1,5:1,5-2,0, сушку и термообработку обжигом при температуре 250-600°С [патент РФ №2158189, МПК B05D 7/24, B05D 7/14, A61L 27/00, опубл. 27.10.2000 г.].

Недостатком данного способа является отсутствие технической возможности получения серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Ближайшим прототипом, по мнению авторов, является способ нанесения гидроксиапатитового покрытия на имплантаты [патент РФ №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32, опубл. 27.04.2011 г.], включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на металлическую поверхность, сушку и последующую термообработку аргоно-плазменной струей при токе дуги 300-500 А, продолжительности 0,5-2,0 мин на дистанции 40-100 мм.

Однако недостатком данного способа является то, что процесс нанесения биокерамического покрытия является технологически сложным, требующим применения сложного и дорогостоящего оборудования, а также отсутствие технической возможности, обеспечивающей получение серебросодержащего гидроксиапатитового покрытия с бактерицидными свойствами.

Задачей изобретения является создание технологически простого и эффективного способа нанесения серебросодержащего гидроксиапатитового покрытия на металлические имплантаты.

Технический результат изобретения заключается в обеспечении бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов, а также в создании технологически простых условий нанесения серебросодержащего гидроксиапатитового покрытия.

Поставленная задача достигается за счет того, что в предлагаемом способе нанесения биокерамического покрытия на имплантаты, включающем смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, согласно новому техническому решению, в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин. При этом происходит эффективный нагрев поверхности имплантата с нанесенной суспензией, состоящей из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, до температуры 900-950°С, обеспечивающей формирование биокерамического покрытия путем плавления фосфатной связки и протекания твердофазных превращений с получением механической смеси, обладающей бактерицидными свойствами.

Сущность изобретения заключается в следующем.

Получение биокерамического покрытия на металлических имплантатах осуществляют путем смешивания порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03. Суспензию наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Данные условия позволяют технологически просто и эффективно формировать на поверхности металлических имплантатов механически прочное биокерамическое покрытие на основе гидроксиапатита, содержащее в качестве бактерицидного компонента наночастицы серебра.

При этом порошок гидроксиапатита смешивают со связующим веществом, содержащим наночастицы серебра, для предварительного удержания частиц гидроксиапатитового порошка и серебра на поверхности имплантата, а термообработку индукционным нагревом проводят для обеспечения ускоренного эффективного плавления фосфатной связки и протекания твердофазных превращений с получением биокерамического покрытия из механической смеси, обладающей бактерицидными свойствами.

Приведенные пределы значений технологического режима индукционно-термической обработки обеспечивают получение биокерамических гидроксиапатитовых покрытий с наночастицами серебра для придания поверхности имплантатов бактерицидных свойств.

Содержание в суспензии из фосфатной связки и порошка гидроксиапатита наночастиц серебра в пределах соотношения суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 является наиболее эффективным для придания биокерамическому покрытию бактерицидных свойств. При содержании наночастиц серебра в суспензии меньше указанного нижнего предела соотношения не позволяет получить покрытие с выраженной бактерицидной активностью, а содержание наночастиц серебра в суспензии больше указанного верхнего предела соотношения является экономически нецелесообразным, т.к. при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03 достигаются наилучшие медико-технические условия безопасного и ускоренного приживления имплантатов с гидроксиапатитовыми покрытиями.

Осуществление индукционно-термической обработки вихревыми токами, наведенными в металлических имплантатах с нанесенной суспензией из фосфатной связки, порошка гидроксиапатита и наночастиц серебра, при значениях потребляемой электрической мощности менее 0,20 кВт, частоте тока на индукторе ниже диапазона 90±10 кГц и продолжительности термообработки менее 1,0 мин является не эффективным, т.к. образующееся покрытие склонно к механическому разрушению при действии функциональных нагрузок на имплантат.

Индукционно-термическая обработка вихревыми токами при значениях потребляемой мощности более 0,25 кВт, частоте тока на индукторе свыше 90±10кГц и продолжительности термообработки более 1,5 мин приводит к нежелательным фазовым и структурным превращениям серебра в составе биокерамического покрытия, что, в результате, существенно снижает его бактерицидные свойства (происходит агрегация наночастиц серебра в более крупные микрометровые частицы с меньшей бактерицидной активностью).

Мощность индукционного нагрева выбирается исходя из требуемой продолжительности процесса нагрева, которая должна приводить к достижению температуры основы имплантата 900-950°С, что обеспечивает необходимое термическое воздействие на суспензию из фосфатной связки, порошка гидроксиапатита и наночастиц серебра для получения прочного биокерамического покрытия с бактерицидными свойствами.

Пример 1. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=50 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут кальцийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,0:1,5. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0:0,03. С помощью кисти или путем окунания полученную серебросодержащую суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной серебросодержащей суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,20 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,5 мин. При этом температура нагрева имплантата составляет 900°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее высокими биоактивными и бактерицидными свойствами.

Пример 2. Приготавливают суспензию из порошка гидроксиапатита дисперсностью Δ=70 мкм и биологически совместимого связующего вещества так, чтобы получаемый раствор был насыщен частицами гидроксиапатита и содержал минимальное количество связующего вещества, достаточное для удержания суспензии на поверхности имплантата. В качестве связующего вещества берут магнийфосфатную связку и смешивают ее с порошком гидроксиапатита в соотношении 1,2:1,9. Затем в полученную суспензию добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,1:0,01. С помощью кисти или путем окунания суспензию наносят на имплантат и подвергают сушке в печи при температуре 50°С в течение 20 мин. После этого имплантат с закрепленной суспензией помещают в камеру устройства индукционного нагрева и производят индукционно-термическую обработку при величине потребляемой электрической мощности 0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0 мин. При этом температура нагрева имплантата составляет 950°С. В данных технологических условиях происходит оплавление поверхности гидроксиапатитовых частиц, их приваривание к металлической основе имплантата и друг к другу при сохранении внутреннего термически неизмененного ядра частиц, распределение и закрепление наночастиц серебра в структуре биокерамического покрытия. В результате получается механически прочное покрытие на основе смеси гидроксиапатита и серебра, обладающее наряду с биологической активностью высокими бактерицидными свойствами.

Положительный эффект предлагаемого изобретения - обеспечение бактерицидных свойств биокерамического гидроксиапатитового покрытия для повышения приживляемости внутрикостных и чрескостных имплантатов - заключается в создании технологически простых и эффективных условий нанесения серебросодержащего гидроксиапатитового покрытия, при которых осуществляют смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, с добавлением в получаемую суспензию наночастиц серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, которую затем наносят на поверхность имплантата и сушат, после чего проводят термообработку имплантата с нанесенной серебросодержащей суспензией в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.

Способ нанесения биокерамического покрытия, включающий смешивание порошка гидроксиапатита с биологически совместимым связующим веществом, в качестве которого используют фосфатные связки при соотношении связки и порошка 1,0-1,5:1,5-2,0, нанесение получаемой суспензии на поверхность имплантата, сушку и последующую термообработку, отличающийся тем, что в суспензию из фосфатных связок и порошка гидроксиапатита дополнительно добавляют наночастицы серебра при соотношении суспензии и наночастиц серебра 1,0-1,1:0,01-0,03, а термообработку имплантата с нанесенной серебросодержащей суспензией проводят в условиях индукционного нагрева при величине потребляемой электрической мощности 0,20-0,25 кВт, частоте тока на индукторе 90±10 кГц и продолжительности 1,0-1,5 мин.
Источник поступления информации: Роспатент

Показаны записи 131-140 из 174.
29.05.2019
№219.017.6350

Способ макетирования на основе полигонального раскроя из толстолистового материала

Изобретение относится к способам макетирования трехмерных изделий, основанным на использовании полигонального раскроя, и наиболее эффективно может быть использовано в сфере промышленного дизайна как при проведении демонстрационного, так и поискового макетирования, при изготовлении трехмерных...
Тип: Изобретение
Номер охранного документа: 0002688300
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.6367

Полиэтиленовая композиция для получения трудногорючих материалов общетехнического назначения

Изобретение относится к полиэтиленовой композиции для получения трудногорючих конструкционных материалов. Композиция содержит полиэтилен высокой плотности в количестве 52,7-66,8 мас. %, наполнитель в количестве 21-26,6 масс. % и модифицирующую добавку в количестве 6,6-26,3 масс. %. Причем в...
Тип: Изобретение
Номер охранного документа: 0002688157
Дата охранного документа: 20.05.2019
30.05.2019
№219.017.6bc3

Способ формирования оксидных покрытий на изделиях из нержавеющих хромоникелевых сталей

Изобретение относится к области машино- и приборостроения, а именно к технологии оксидирования изделий конструкционного и медицинского назначения из нержавеющей хромоникелевой стали, например элементов запорной арматуры и внутрикостных имплантируемых конструкций. Способ включает размещение...
Тип: Изобретение
Номер охранного документа: 0002689485
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.7207

Способ химико-термического упрочнения малогабаритных изделий из технического титана

Изобретение относится к области машино- и приборостроения, а именно технологии химико-термической обработки и упрочнения малогабаритных изделий конструкционного и медицинского назначения, изготовленных из сплавов титана. Способ включает размещение изделий в термостойком контейнере на подкладке...
Тип: Изобретение
Номер охранного документа: 0002690067
Дата охранного документа: 30.05.2019
27.06.2019
№219.017.98dc

Способ адсорбционной подготовки почвы к фиторемедиации

Изобретение относится к области экологической безопасности и может быть использовано для очистки от тяжелых металлов как техногенного грунта, так и земель сельскохозяйственного назначения. Осуществляется подготовка почвы категории «чрезвычайно опасный» для дальнейшей ее очистки фиторемедиацией....
Тип: Изобретение
Номер охранного документа: 0002692554
Дата охранного документа: 25.06.2019
06.07.2019
№219.017.a71f

Энергохимическая установка для получения синтез-газа, электрической и тепловой энергии

Изобретение относится к области химии и теплоэнергетики, а именно, к энергохимической установки для получения синтез-газа, электрической и тепловой энергии. Установка включает реактор частичного окисления, снабженный входами для жидкого или газообразного топлива, окислителя, водяного пара и...
Тип: Изобретение
Номер охранного документа: 0002693777
Дата охранного документа: 04.07.2019
17.07.2019
№219.017.b4f2

Способ упрочнения в свч электромагнитном поле крупногабаритных изделий сложной формы из армированных углеродным волокном полимерных композиционных материалов

Изобретение относится к технологии электрофизического упрочнения окончательно сформированных полимерных изделий различной сложности формы. Способ упрочнения в СВЧ электромагнитном поле крупногабаритных изделий сложной формы из армированных углеродным волокном полимерных композиционых материалов...
Тип: Изобретение
Номер охранного документа: 0002694462
Дата охранного документа: 15.07.2019
10.08.2019
№219.017.bda9

Способ селективного определения ионов тяжелых металлов в водных средах с помощью люминесцентной мультизондовой системы

Изобретение относится к области люминесцентного анализа вещества и касается способа селективного определения ионов тяжелых металлов в водных средах люминесцентной мультизондовой системой. При осуществлении способа формируют мультизондовую систему и проводят калибровку ее отклика к воздействию...
Тип: Изобретение
Номер охранного документа: 0002696824
Дата охранного документа: 06.08.2019
10.08.2019
№219.017.bdc0

Способ получения полимерного электрета

Изобретение относится к области электротехники, в частности к способу получения полимерного электрета, который может быть использован в герметизирующих системах, в триботехнике, в различной аппаратуре и приборах, таких как электретные дозиметры, электретные фильтры и электретные микрофоны. Для...
Тип: Изобретение
Номер охранного документа: 0002696623
Дата охранного документа: 05.08.2019
12.08.2019
№219.017.bead

Способ диффузионной сварки металлокерамических узлов

Изобретение может быть использовано при изготовлении диффузионной сваркой металлокерамических узлов электровакуумных приборов. Осуществляют сдавливание соединяемых деталей узлов через промежуточную прокладку и взрыв прокладки путем подачи импульсов тока. Прокладку выполняют из трех параллельных...
Тип: Изобретение
Номер охранного документа: 0002696800
Дата охранного документа: 06.08.2019
Показаны записи 81-81 из 81.
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
+ добавить свой РИД