×
20.04.2016
216.015.35af

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области микроструктурных технологий. Способ включает нанесение множества наноструктурных областей с гидрофобными свойствами на поверхность 2 микроканала. Наноструктурные области выполняют в виде гидрофобных полос 1 шириной L. Наносят наноструктурные области поперек течения на гладкую поверхность микроканала на расстоянии В друг от друга при отношении L/B≥1. Значения L и В определяют исходя из свойств жидкости и поверхности. Обеспечивается эффективное снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью. 1 ил.
Основные результаты: Способ изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, включающий нанесение на поверхность микроканала наноструктурных областей с гидрофобными свойствами, отличающийся тем, что на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии B друг от друга при отношении L/B≥1.

Изобретение относится к области микроструктурных технологий.

В последние десятилетия существенное развитие в технике и технологиях получило использование микроканалов. В целом ряде практических приложений могут использоваться достаточно протяженные микроканалы. Одним из таких приложений являются системы охлаждения электронного и микроэлектронного оборудования. Особенностью таких систем является локальность тепловыделения, т.е. когда жидкость сначала транспортируется к месту тепловыделения по адиабатической секции или участку системы. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. Чаще всего в силу конструктивных особенностей мини- и микросистем размер канала должен оставаться неизменным на всем протяжении системы.

Одним из важнейших препятствий на пути внедрения и распространения микросистем с протяженными микроканалами являются значительные перепады давления вдоль канала. Значительные перепады давления вдоль канала, прежде всего, возникают из-за требования прокачивать строго определенное количество жидкости для обеспечения отвода определенного количества тепла. Часто в микросистемах (в системах охлаждения) используют кипящие среды, двухфазные потоки или пленочные течения. Однако проблема значительных перепадов давления вдоль канала остается для любых микросистем с участием не диспергированной жидкости. Сегодня эту проблему решают за счет использования покрытий с наноструктурными или микроструктурными областями, канавками или сквозными отверстиями. Во всех этих случаях приходится обрабатывать поверхность, что исключает использование этих способов на гладких поверхностях.

Задачей изобретения является создание эффективного способа снижения сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.

Известен способ и устройство для управления сопротивлением при движении потока жидкости на наноструктурированных или микроструктурированных поверхностях (патент US 2005069458, 2005 г., B01L 3/00; В81В 1/00; В81В 7/04; В82В 1/00; В82В 3/00; F15C 1/00; F15C 1/04; (IPC1-7): B01L 3/00), при котором для снижения сопротивления при движении потока жидкости на поверхность наносят множество наноструктурных или микроструктурных областей по заранее определенному шаблону. Наноструктурные или микроструктурные области представляют собой ячейки. Параметры областей можно менять для достижения желаемого уровня сопротивления при движении потока жидкости.

Известен способ микроканального охлаждения (патент ЕР 1662852 (A1), 2006 г., H01L 23/473; Н05К 7/20), при котором для снижения сопротивления при движении потока жидкости на поверхность микроканала наносят множество наноструктурных областей с гидрофобным покрытием. Наноструктурные области представляют собой выступающие структуры. Параметры наноструктурных областей, а также расстояние между ними определяют из свойств жидкости и поверхности.

Недостатками этих технических решений являются:

1) невозможность использования на гладких поверхностях;

2) высокие энергетические затраты на прокачку теплоносителя.

Наиболее близким к заявляемому является способ крепления микропузыря на поверхности пластины (патент US 20100166964, 2008 г., B05D 5/08), при котором для снижения сопротивления при движении потока жидкости на поверхности формируют множество канавок, в которых формируются пузыри, при этом канавки обрабатывают материалом с гидрофобными свойствами. В другом варианте для снижения сопротивления при движении потока жидкости на поверхности формируют множество сквозных отверстий, обработанных материалом с гидрофобными свойствами, где также образуются пузыри. Размер канавок и отверстий в диапазоне 1-1000 мкм.

Недостатком этого способа является невозможность его использования на гладких поверхностях, т.к. при формировании канавок или отверстий происходит повреждение поверхности.

Задачей изобретения является создание способа изготовления системы охлаждения электронного и микроэлектронного оборудования, при котором обеспечивается снижение сопротивления при движении однофазного или двухфазного потока в микроканалах с гладкой поверхностью.

Поставленная задача решается тем, что в способе изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, при котором на поверхность микроканала наносят наноструктурные области с гидрофобными свойствами, согласно изобретению на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии В друг от друга при отношении L/В≥1.

Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно обладает гидрофильными свойствами. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Пузырьки коагулируют и образовывают «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль микроканала, а значит снижение энергетических затрат на прокачку теплоносителя.

Гидрофобные полосы наносят практически, не повреждая гладкую поверхность микроканала.

На фиг. 1 представлен общий вид поверхности микроканала с нанесенными гидрофобными полосами.

1 - гидрофобные полосы, 2 - необработанная поверхность микроканала, 3 - источник тепловыделения.

Способ осуществляется следующим образом.

Гидрофобные полосы наносят поперек течения на гладкую поверхность микроканала. Гидрофобные полосы чередуются с необработанной поверхностью микроканала, которая обычно бывает гидрофильной. Мелкие пузырьки газа, которые обычно имеются в технических и технологических системах, осаждаются на гидрофобных полосах. Граница контрастного смачивания удерживает пузырьки и препятствует их распространению вдоль потока. Данный факт подтвержден экспериментально для условий земной гравитации, микрогравитации и гипергравитации до 1.8×g0 (Kabov О.A., Cheverda V., Biondi F., Zaytsev D., Chikov S., Queeckers P., Marengo M., Araneo L., Rioboo R., de Coninck J., Glushchuk A., Bykovskaya E., Iorio C, Bourdon В., and Memoli M., Dynamics and Boiling Incipience in Microgravity, pp 61, Results of ESA Parabolic Flights Experiments, Fifth International Topical Team Workshop on Two-Phase Systems for Ground and Space Applications, Kyoto, Japan, September 26-29, Book of Abstracts, 2010). В качестве рабочей жидкости использовалась вода в качестве поверхности - кремниевая подложка. Эксперименты показывают, что для условий земной гравитации гидрофобная зона покрыта пузырями размером, не превышавшим, как правило, 1 мм. Область пузырей четко ограничена границей контрастного смачивания.

Пузырьки могут коагулировать и образовывать «пузырьковый слой», который удерживается за счет контрастной смачиваемости на поверхности микроканала. При необходимости микро- или макропузырьки газа или воздуха могут быть специально добавлены в систему. При определенных условиях «пузырьковый слой» может превращаться в сплошной газовый слой. Предполагается, что пузыри имеют форму сфероидов, причем их высота намного меньше основания. Пузыри перекрывают только незначительную часть сечения микроканала и практически не повышают сопротивления. Размер основания и высота пузыря могут регулироваться статическим контактным углом смачивания, обеспечиваемым наноструктурным покрытием (гидрофобными полосами), а также шириной этих полос.

Для получения гидрофобных полос часть поверхности микроканала обрабатывается химическим способом (нанесением монослоя молекул другого вещества) так, чтобы на поверхности появилась область с наноразмерной шероховатостью и более высоким значением контактного угла смачивания. Области поверхности с нанесенными на нее наноструктурами являются гидрофобными относительно остальной поверхности. Толщина наноструктур может составлять порядка 1 нм, в зависимости от типа поверхности, и не является принципиальным параметром, т.е. заметным термическим сопротивлением и заметным сужением канала. Разница между контактными углами смачивания на гидрофобных полосах и полосах с необработанной поверхностью должна составлять от 20-40 градусов и более.

Известно, что вязкость газа на несколько порядков меньше, чем жидкостей, что и обеспечивает значительное снижение сопротивления при движении потока и, как следствие, снижение перепада давления вдоль канала, а значит снижение энергетических затрат на прокачку теплоносителя. Снижение трения будет пропорционально отношению ширины гидрофобных полос к ширине полос необработанной поверхности канала, т.е. L/B. При значении L/B>>1 ожидается снижение сопротивления канала в 2 и более раз. Предполагается, что минимальная ширина полос необработанной поверхности канала по технологическим требованиям не может быть менее 100-300 мкм. Ширина гидрофобных полос определяется размерами основания пузыря, а также условиями их коагуляции и может составлять до 5000 мкм и более. Таким образом, условие L/B>>1 реально может быть достигнуто в предложенной системе.

Способ изготовления системы охлаждения электронного и микроэлектронного оборудования, содержащей микроканалы, включающий нанесение на поверхность микроканала наноструктурных областей с гидрофобными свойствами, отличающийся тем, что на гладкую поверхность микроканала наносят наноструктурные области с гидрофобными свойствами в виде гидрофобных полос шириной L поперек течения однофазного или двухфазного потока охлаждающей жидкости на расстоянии B друг от друга при отношении L/B≥1.
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО И МИКРОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 96.
20.02.2015
№216.013.2a2c

Способ интенсификации теплообмена при кипении на гладкой поверхности

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования. На гладкой охлаждаемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002542253
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
Показаны записи 21-30 из 67.
20.02.2015
№216.013.2a2c

Способ интенсификации теплообмена при кипении на гладкой поверхности

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования. На гладкой охлаждаемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002542253
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
+ добавить свой РИД