×
20.04.2016
216.015.357e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИН ДЕФОРМАЦИЙ СТЕНКИ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО ЦИЛИНДРИЧЕСКОГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Передают полученную цифровую информацию в компьютерную программу, производят построение цифровой точечной трехмерной модели внешней поверхности стенки резервуара, далее выполняют развертывание полученной объединенной цифровой точечной трехмерной модели на плоскость, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара в виде изолиний, оценивают характер и величину деформаций стенки резервуара путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений. Технический результат - повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического. 1 ил.
Основные результаты: Способ определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом по внешней боковой поверхности вышеупомянутого резервуара, отличающийся тем, что устанавливают специальные марки в фиксированных местах, производят измерения по внешней боковой поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин - ±10′′,производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара, в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.

Данный способ относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использован при наблюдении за деформациями стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями, а так же при их техническом диагностировании и поверке.

Известен способ определения геометрических параметров резервуара геометрическим методом [ГОСТ 8.570-2000 «Резервуары стальные вертикальные цилиндрические. Методика поверки», утвержден Постановлением Государственного комитета РФ по стандартизации и метрологии от 23 апреля 2001 г. №185-ст., введен в действие с 1 января 2002 г.], взятый в качестве прототипа.

Сущность данного способа состоит в том, что величины деформаций стенки резервуара вертикального цилиндрического определяются с помощью шаблонов, отвесов или геодезическими методами с помощью измерительной каретки с теодолитом. Измерения производят два раза в каждой точке для каждого пояса резервуара. Расхождения между результатами двух измерений должны находиться в пределах, указанных в технической документации.

Недостатком этого способа является низкая точность и высокая трудоемкость, так как данный способ предполагает контроль геометрических параметров в дискретных точках, он основан на интерполяции между измерениями, в результате чего не учитываются фактические изменения неровности стенки резервуара, что не позволяет достоверно оценить качество боковой поверхности стенки резервуара, а значит, его состояние в целом. Также, данный способ предполагает наличие человеческого фактора в процессе контроля, что так же ведет к снижению достоверности и точности.

Задачей предлагаемого изобретения является повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического.

Поставленная задача достигается тем, что в способе определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом но внешней боковой поверхности вышеупомянутого резервуара согласно изобретению устанавливают специальные марки в фиксированных местах, производят измерения по внешней поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара. Полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара. В этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат. Получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками. Выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.

Указанная совокупность признаков позволяет повысить эффективность контроля степени деформаций боковой поверхности стенки резервуара за счет повышения оперативности и достоверности оценки полученной информации непосредственно на месте измерения в режиме реального времени. Кроме того, указанная совокупность признаков позволяет повысить точность измерений, так как по сканерным данным можно строить практически в автоматическом режиме цифровую модель всей боковой поверхности стенки резервуара, используя любое количество точек на стенке резервуара, и тем самым повышать точность определения величин деформаций боковой поверхности стенки резервуара.

Способ поясняется чертежом. На Фиг. 1 представлена цифровая плоская, двумерная точечная модель боковой поверхности стенки резервуара вертикального цилиндрического.

Предлагаемый способ осуществляется следующим образом. Для определения геометрических характеристик резервуара вертикального цилиндрического выбирают шаг сканирования, количество станций и место их расположения. Шаг сканирования должен быть подобран с учетом того, чтобы плотность точек, измеряемых на боковой поверхности стенки резервуара, позволяла с достаточной точностью и достоверностью определять его геометрию, учитывая деформацию стенок резервуара при его заполнении. Также цифровые точечные модели, полученные с разных станций, должны иметь достаточную плотность в зонах перекрытий, для качественного объединения их в единую модель.

Снаружи резервуара вертикального цилиндрического устанавливают наземный лазерный сканер с собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащих внешней поверхности стенки резервуара, выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования. Предварительно осуществляют разбивку внешней поверхности вышеупомянутого резервуара и в фиксированных местах устанавливают специальные марки, производят построение цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее, чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, и производят построение объединенной цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара. При исследовании степени деформации стенки резервуара необходимо трехмерное представление данных преобразовать в двумерное. Для этого в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, т.е. преобразуют координаты точек, принадлежащих боковой поверхности стенки из цилиндрической системы координат в прямоугольную. Результатом развертки является цифровая плоская, двумерная точечная модель поверхности, в которой координата Z характеризует отклонение боковой поверхности стенки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, принадлежащими боковой поверхности стенки резервуара. Такая операция облегчает обработку цифровой точечной модели, поскольку ее интерпретация в виде плоского чертежа более наглядна. На основании цифровой плоской точечной модели выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического путем нанесения изолиний, которые наглядно показывают все деформации. Кроме того, на эту карту можно нанести рисунок сварных швов, мест подключения трубопроводов, что повышает ее информативность и позволяет более летально проанализировать и оценить характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений (см. Фиг. 1).

В настоящее время не существует достоверного геодезического способа определения величин деформаций стенки резервуара вертикального цилиндрического. Предлагаемый инновационный способ позволит проводить поверку и техническую диагностику резервуаров вертикальных цилиндрических с относительной погрешностью измерений 0,07%. Кроме того, данный способ, основанный на бесконтактном дистанционном методе, не требует предварительного освобождения его от нефтепродуктов, зачистки, определения объема внутренних элементов конструкций и других затратных мероприятий, связанных с простоем, а значит - с упущенной коммерческой прибылью.

Способ определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом по внешней боковой поверхности вышеупомянутого резервуара, отличающийся тем, что устанавливают специальные марки в фиксированных местах, производят измерения по внешней боковой поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин - ±10′′,производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара, в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИН ДЕФОРМАЦИЙ СТЕНКИ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО ЦИЛИНДРИЧЕСКОГО
Источник поступления информации: Роспатент

Показаны записи 31-40 из 46.
13.01.2017
№217.015.74e6

Способ определения величины и направления крена резервуара вертикального цилиндрического

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических. В способе определения величины и направления крена резервуара вертикального цилиндрического геодезическим методом осуществляют горизонтальную разбивку внешней поверхности вышеупомянутого резервуара...
Тип: Изобретение
Номер охранного документа: 0002597958
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8638

Способ изготовления анизотропной облицовки кумулятивного заряда

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет. Способ включает изготовление заготовки оболочечной детали кумулятивной облицовки...
Тип: Изобретение
Номер охранного документа: 0002603327
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d86

Способ создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы

Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных...
Тип: Изобретение
Номер охранного документа: 0002610792
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.a667

Патрон для гладкоствольных ружей с разрушающейся пулей

Изобретение относится к патронам для гладкоствольных ружей и может быть применено для спортивной стрельбы на спортивных стендах и закрытых тирах с применением пулеулавливателей, а также для нужд МВД. Патрон содержит гильзу, капсюль-воспламенитель, основной метательный заряд, дополнительную...
Тип: Изобретение
Номер охранного документа: 0002608087
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.acc6

Двухпульный патрон для гладкоствольных ружей

Изобретение относится к пулевым патронам для гладкоствольных ружей. Двухпульный патрон для гладкоствольных ружей содержит гильзу, капсюль-воспламенитель, пороховой заряд, обтюратор, стреловидную пулю. При этом в гильзе размещена дополнительная часть метательного заряда, отделенная от основного...
Тип: Изобретение
Номер охранного документа: 0002612404
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b09e

Капсюлированная гильза для стрелкового оружия

Изобретение относится к боеприпасам, в частности к капсюлированным гильзам. Гильза имеет центральное отверстие в дне капсюльного гнезда и кольцевое углубление на периферийной части дна капсюльного гнезда и запрессованный в нее капсюль-воспламенитель, состоящий из металлического колпачка с...
Тип: Изобретение
Номер охранного документа: 0002613395
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b147

Способ формирования тонкоплёночного рисунка на подложке

Изобретение относится к оптическим технологиям формирования топологических структур на подложках, в частности к лазерным методам формирования на подложках топологических структур нано- и микроразмеров для нано- и микромеханики, микро- и наноэлектроники. В способе формирования тонкопленочного...
Тип: Изобретение
Номер охранного документа: 0002613054
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b4b3

Способ определения параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли и может быть использовано при строительстве или реконструкции автомобильных дорог. В заявленном способе выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги с помощью...
Тип: Изобретение
Номер охранного документа: 0002614082
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c6bc

Акустическая линза

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны....
Тип: Изобретение
Номер охранного документа: 0002618600
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dd1c

Детекторная головка

Изобретение относится к области измерительной техники и касается детекторной головки. Детекторная головка включает в себя корпус, который выполнен в виде основания и крышки. В основании выполнен сквозной волноводный канал, а в крышке расположен короткозамыкатель. Между основанием и крышкой...
Тип: Изобретение
Номер охранного документа: 0002624608
Дата охранного документа: 04.07.2017
Показаны записи 31-40 из 65.
13.01.2017
№217.015.74e6

Способ определения величины и направления крена резервуара вертикального цилиндрического

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических. В способе определения величины и направления крена резервуара вертикального цилиндрического геодезическим методом осуществляют горизонтальную разбивку внешней поверхности вышеупомянутого резервуара...
Тип: Изобретение
Номер охранного документа: 0002597958
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8638

Способ изготовления анизотропной облицовки кумулятивного заряда

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет. Способ включает изготовление заготовки оболочечной детали кумулятивной облицовки...
Тип: Изобретение
Номер охранного документа: 0002603327
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d86

Способ создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы

Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных...
Тип: Изобретение
Номер охранного документа: 0002610792
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.a667

Патрон для гладкоствольных ружей с разрушающейся пулей

Изобретение относится к патронам для гладкоствольных ружей и может быть применено для спортивной стрельбы на спортивных стендах и закрытых тирах с применением пулеулавливателей, а также для нужд МВД. Патрон содержит гильзу, капсюль-воспламенитель, основной метательный заряд, дополнительную...
Тип: Изобретение
Номер охранного документа: 0002608087
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.acc6

Двухпульный патрон для гладкоствольных ружей

Изобретение относится к пулевым патронам для гладкоствольных ружей. Двухпульный патрон для гладкоствольных ружей содержит гильзу, капсюль-воспламенитель, пороховой заряд, обтюратор, стреловидную пулю. При этом в гильзе размещена дополнительная часть метательного заряда, отделенная от основного...
Тип: Изобретение
Номер охранного документа: 0002612404
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b09e

Капсюлированная гильза для стрелкового оружия

Изобретение относится к боеприпасам, в частности к капсюлированным гильзам. Гильза имеет центральное отверстие в дне капсюльного гнезда и кольцевое углубление на периферийной части дна капсюльного гнезда и запрессованный в нее капсюль-воспламенитель, состоящий из металлического колпачка с...
Тип: Изобретение
Номер охранного документа: 0002613395
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b147

Способ формирования тонкоплёночного рисунка на подложке

Изобретение относится к оптическим технологиям формирования топологических структур на подложках, в частности к лазерным методам формирования на подложках топологических структур нано- и микроразмеров для нано- и микромеханики, микро- и наноэлектроники. В способе формирования тонкопленочного...
Тип: Изобретение
Номер охранного документа: 0002613054
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b4b3

Способ определения параметров геометрических элементов автомобильной дороги и характеристик придорожной полосы

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли и может быть использовано при строительстве или реконструкции автомобильных дорог. В заявленном способе выполняют планово-высотное обоснование (ПВО) контролируемого участка автомобильной дороги с помощью...
Тип: Изобретение
Номер охранного документа: 0002614082
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c6bc

Акустическая линза

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны....
Тип: Изобретение
Номер охранного документа: 0002618600
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dd1c

Детекторная головка

Изобретение относится к области измерительной техники и касается детекторной головки. Детекторная головка включает в себя корпус, который выполнен в виде основания и крышки. В основании выполнен сквозной волноводный канал, а в крышке расположен короткозамыкатель. Между основанием и крышкой...
Тип: Изобретение
Номер охранного документа: 0002624608
Дата охранного документа: 04.07.2017
+ добавить свой РИД