×
20.04.2016
216.015.357e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИН ДЕФОРМАЦИЙ СТЕНКИ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО ЦИЛИНДРИЧЕСКОГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные координаты по осям X, Y, Z точек отражения лазерного луча от поверхности резервуара в условной системе координат. Выполняют регистрацию сканов между собой, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат. Передают полученную цифровую информацию в компьютерную программу, производят построение цифровой точечной трехмерной модели внешней поверхности стенки резервуара, далее выполняют развертывание полученной объединенной цифровой точечной трехмерной модели на плоскость, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара в виде изолиний, оценивают характер и величину деформаций стенки резервуара путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений. Технический результат - повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического. 1 ил.
Основные результаты: Способ определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом по внешней боковой поверхности вышеупомянутого резервуара, отличающийся тем, что устанавливают специальные марки в фиксированных местах, производят измерения по внешней боковой поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин - ±10′′,производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара, в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.

Данный способ относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использован при наблюдении за деформациями стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами и прочими жидкостями, а так же при их техническом диагностировании и поверке.

Известен способ определения геометрических параметров резервуара геометрическим методом [ГОСТ 8.570-2000 «Резервуары стальные вертикальные цилиндрические. Методика поверки», утвержден Постановлением Государственного комитета РФ по стандартизации и метрологии от 23 апреля 2001 г. №185-ст., введен в действие с 1 января 2002 г.], взятый в качестве прототипа.

Сущность данного способа состоит в том, что величины деформаций стенки резервуара вертикального цилиндрического определяются с помощью шаблонов, отвесов или геодезическими методами с помощью измерительной каретки с теодолитом. Измерения производят два раза в каждой точке для каждого пояса резервуара. Расхождения между результатами двух измерений должны находиться в пределах, указанных в технической документации.

Недостатком этого способа является низкая точность и высокая трудоемкость, так как данный способ предполагает контроль геометрических параметров в дискретных точках, он основан на интерполяции между измерениями, в результате чего не учитываются фактические изменения неровности стенки резервуара, что не позволяет достоверно оценить качество боковой поверхности стенки резервуара, а значит, его состояние в целом. Также, данный способ предполагает наличие человеческого фактора в процессе контроля, что так же ведет к снижению достоверности и точности.

Задачей предлагаемого изобретения является повышение точности и достоверности определения величин деформаций стенки резервуара вертикального цилиндрического.

Поставленная задача достигается тем, что в способе определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом но внешней боковой поверхности вышеупомянутого резервуара согласно изобретению устанавливают специальные марки в фиксированных местах, производят измерения по внешней поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара. Полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара. В этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат. Получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками. Выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.

Указанная совокупность признаков позволяет повысить эффективность контроля степени деформаций боковой поверхности стенки резервуара за счет повышения оперативности и достоверности оценки полученной информации непосредственно на месте измерения в режиме реального времени. Кроме того, указанная совокупность признаков позволяет повысить точность измерений, так как по сканерным данным можно строить практически в автоматическом режиме цифровую модель всей боковой поверхности стенки резервуара, используя любое количество точек на стенке резервуара, и тем самым повышать точность определения величин деформаций боковой поверхности стенки резервуара.

Способ поясняется чертежом. На Фиг. 1 представлена цифровая плоская, двумерная точечная модель боковой поверхности стенки резервуара вертикального цилиндрического.

Предлагаемый способ осуществляется следующим образом. Для определения геометрических характеристик резервуара вертикального цилиндрического выбирают шаг сканирования, количество станций и место их расположения. Шаг сканирования должен быть подобран с учетом того, чтобы плотность точек, измеряемых на боковой поверхности стенки резервуара, позволяла с достаточной точностью и достоверностью определять его геометрию, учитывая деформацию стенок резервуара при его заполнении. Также цифровые точечные модели, полученные с разных станций, должны иметь достаточную плотность в зонах перекрытий, для качественного объединения их в единую модель.

Снаружи резервуара вертикального цилиндрического устанавливают наземный лазерный сканер с собственной программой обработки данных, принадлежащей данному оборудованию, и в соответствии с эксплуатационной документацией на прибор (ЭД) автоматически определяют координаты точек, принадлежащих внешней поверхности стенки резервуара, выполняют измерение расстояний при помощи встроенного лазерного дальномера, при этом для каждого измерения фиксируют вертикальные и горизонтальные углы, шаг сканирования. Предварительно осуществляют разбивку внешней поверхности вышеупомянутого резервуара и в фиксированных местах устанавливают специальные марки, производят построение цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара путем сканирования внешней поверхности резервуара при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее, чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:

- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;

- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;

- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин -±10″.

Далее производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, и производят построение объединенной цифровой точечной трехмерной (3D) модели внешней поверхности стенки резервуара. При исследовании степени деформации стенки резервуара необходимо трехмерное представление данных преобразовать в двумерное. Для этого в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, т.е. преобразуют координаты точек, принадлежащих боковой поверхности стенки из цилиндрической системы координат в прямоугольную. Результатом развертки является цифровая плоская, двумерная точечная модель поверхности, в которой координата Z характеризует отклонение боковой поверхности стенки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, принадлежащими боковой поверхности стенки резервуара. Такая операция облегчает обработку цифровой точечной модели, поскольку ее интерпретация в виде плоского чертежа более наглядна. На основании цифровой плоской точечной модели выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического путем нанесения изолиний, которые наглядно показывают все деформации. Кроме того, на эту карту можно нанести рисунок сварных швов, мест подключения трубопроводов, что повышает ее информативность и позволяет более летально проанализировать и оценить характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений (см. Фиг. 1).

В настоящее время не существует достоверного геодезического способа определения величин деформаций стенки резервуара вертикального цилиндрического. Предлагаемый инновационный способ позволит проводить поверку и техническую диагностику резервуаров вертикальных цилиндрических с относительной погрешностью измерений 0,07%. Кроме того, данный способ, основанный на бесконтактном дистанционном методе, не требует предварительного освобождения его от нефтепродуктов, зачистки, определения объема внутренних элементов конструкций и других затратных мероприятий, связанных с простоем, а значит - с упущенной коммерческой прибылью.

Способ определения величин деформаций стенки резервуара вертикального цилиндрического геодезическим методом по внешней боковой поверхности вышеупомянутого резервуара, отличающийся тем, что устанавливают специальные марки в фиксированных местах, производят измерения по внешней боковой поверхности вышеупомянутого резервуара путем сканирования этой поверхности при помощи наземного лазерного сканера с линейной дискретностью шага сканирования в пределах от 0,3 до 1,0 см, не менее чем с четырех сканерных станций на расстоянии от 10 до 20 м от резервуара, полученные данные передают в ПЭВМ, выполняют объединение сканов между собой, при этом качество объединения полученных данных контролируют путем выполнения следующих условий:- средняя квадратическая погрешность единицы веса объединения сканов не должна превышать ±1,0 мм;- расхождение координат расположения специальных марок не должно превышать ±2,0 мм;- средняя квадратическая ошибка определения элементов внешнего ориентирования для линейных величин не должна превышать ±1,5 мм, а для угловых величин - ±10′′,производят обработку данных результатов наземного лазерного сканирования с помощью программного обеспечения, позволяющего выполнить привязку сканов к заданной системе координат, производят построение цифровой точечной трехмерной (3D) модели внешней боковой поверхности стенки резервуара, в этой же программе выполняют развертывание полученной объединенной цифровой точечной трехмерной (3D) модели на плоскость путем перевода всех ее точек из цилиндрической в плоскую прямоугольную систему координат, получают развертку в виде плоской точечной модели поверхности, в которой координата Z показывает удаление любой точки от вертикальной оси вышеупомянутого резервуара, а также взаимное отклонение от вертикали между точками, выполняют построение карты деформаций боковой поверхности стенки резервуара вертикального цилиндрического в виде изолиний, оценивают характер и величину деформаций стенки резервуара вертикального цилиндрического путем сравнения фактических значений деформаций стенки по оси Z с требованиями нормативных значений.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИН ДЕФОРМАЦИЙ СТЕНКИ РЕЗЕРВУАРА ВЕРТИКАЛЬНОГО ЦИЛИНДРИЧЕСКОГО
Источник поступления информации: Роспатент

Показаны записи 21-30 из 46.
10.12.2015
№216.013.96d7

Пироэлектрический преобразователь электромагнитных волн

Изобретение относится к области оптико-электронных приборов и касается пироэлектрического преобразователя электромагнитных волн. Пироэлектрический преобразователь включает в себя теплоизолированную пластину пиродиэлектрика с проводящими тонкопленочными обкладками на противоположных поверхностях...
Тип: Изобретение
Номер охранного документа: 0002570235
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9afd

Направленный ответвитель

Использование: для радиолокации, радионавигации, связи, а также в антенных системах и радиоизмерениях. Сущность изобретения заключается в том, что направленный ответвитель, выполненный на диэлектрической подложке с нанесенной топологией направленного ответвителя, состоит из четырех отрезков...
Тип: Изобретение
Номер охранного документа: 0002571302
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9fa1

Способ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины...
Тип: Изобретение
Номер охранного документа: 0002572502
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a251

Малошумящий приемно-усилительный модуль

Изобретение относится к элементам приемных систем и предназначено для усиления принимаемых СВЧ сигналов с одновременным обеспечением защиты по входу от синхронных и несинхронных помех. Техническим результатом является повышение стабильности усиления при ограничении по мощности сигнала,...
Тип: Изобретение
Номер охранного документа: 0002573195
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c71c

Устройство для измерений коэффициента черноты покрытий

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента черноты покрытий. Заявлено устройство, содержащее идентичные по конструкции тепловой излучатель и теплосток, снабженные подключенными к выходу регуляторов температуры термоэлектрическими батареями...
Тип: Изобретение
Номер охранного документа: 0002578730
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.391f

Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Технический результат состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени. Для этого в системе...
Тип: Изобретение
Номер охранного документа: 0002582595
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5fef

Способ определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического от горизонтали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами...
Тип: Изобретение
Номер охранного документа: 0002590342
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.614c

Способ получения, обработки и отображения геопространственных данных в формате 3d с применением технологии лазерного сканирования

Изобретение относится к области отображения геопространственной информации для создания трехмерных цифровых моделей объектов и территорий. Технический результат - обеспечение повышения оперативности доступа к актуальной информации на конкретную территорию. Способ получения, обработки и...
Тип: Изобретение
Номер охранного документа: 0002591173
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6770

Устройство квазиоптической линии передачи терагерцовых волн

Устройство квазиоптической линии передачи терагерцовых волн содержит набор диэлектрических линз, пространственно разнесенных между собой и расположенных вдоль направления распространения волн. Причем линзы выполнены в виде кубоида с величиной стенки, лежащей в диапазоне от 0.85λ до 1.3λ, где λ...
Тип: Изобретение
Номер охранного документа: 0002591282
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6929

Способ определения и восстановления положения горизонтальной оси линейного инженерного объекта

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта. В заявленном способе определения и восстановления положения горизонтальной оси линейного инженерного...
Тип: Изобретение
Номер охранного документа: 0002591585
Дата охранного документа: 20.07.2016
Показаны записи 21-30 из 65.
10.12.2015
№216.013.96d7

Пироэлектрический преобразователь электромагнитных волн

Изобретение относится к области оптико-электронных приборов и касается пироэлектрического преобразователя электромагнитных волн. Пироэлектрический преобразователь включает в себя теплоизолированную пластину пиродиэлектрика с проводящими тонкопленочными обкладками на противоположных поверхностях...
Тип: Изобретение
Номер охранного документа: 0002570235
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9afd

Направленный ответвитель

Использование: для радиолокации, радионавигации, связи, а также в антенных системах и радиоизмерениях. Сущность изобретения заключается в том, что направленный ответвитель, выполненный на диэлектрической подложке с нанесенной топологией направленного ответвителя, состоит из четырех отрезков...
Тип: Изобретение
Номер охранного документа: 0002571302
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9fa1

Способ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины...
Тип: Изобретение
Номер охранного документа: 0002572502
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a251

Малошумящий приемно-усилительный модуль

Изобретение относится к элементам приемных систем и предназначено для усиления принимаемых СВЧ сигналов с одновременным обеспечением защиты по входу от синхронных и несинхронных помех. Техническим результатом является повышение стабильности усиления при ограничении по мощности сигнала,...
Тип: Изобретение
Номер охранного документа: 0002573195
Дата охранного документа: 20.01.2016
27.03.2016
№216.014.c71c

Устройство для измерений коэффициента черноты покрытий

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента черноты покрытий. Заявлено устройство, содержащее идентичные по конструкции тепловой излучатель и теплосток, снабженные подключенными к выходу регуляторов температуры термоэлектрическими батареями...
Тип: Изобретение
Номер охранного документа: 0002578730
Дата охранного документа: 27.03.2016
27.04.2016
№216.015.391f

Система точной навигации подвижных объектов с использованием данных наземной инфраструктуры глонасс

Изобретение относится к области радиотехники и может быть использовано для навигации подвижных объектов в режиме реального времени. Технический результат состоит в повышении точности и надежности определения местоположения подвижных объектов в режиме реального времени. Для этого в системе...
Тип: Изобретение
Номер охранного документа: 0002582595
Дата охранного документа: 27.04.2016
12.01.2017
№217.015.5fef

Способ определения величины и направления отклонения наружного контура днища резервуара вертикального цилиндрического от горизонтали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических, предназначенных для хранения и проведения торговых операций с нефтью, нефтепродуктами...
Тип: Изобретение
Номер охранного документа: 0002590342
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.614c

Способ получения, обработки и отображения геопространственных данных в формате 3d с применением технологии лазерного сканирования

Изобретение относится к области отображения геопространственной информации для создания трехмерных цифровых моделей объектов и территорий. Технический результат - обеспечение повышения оперативности доступа к актуальной информации на конкретную территорию. Способ получения, обработки и...
Тип: Изобретение
Номер охранного документа: 0002591173
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6770

Устройство квазиоптической линии передачи терагерцовых волн

Устройство квазиоптической линии передачи терагерцовых волн содержит набор диэлектрических линз, пространственно разнесенных между собой и расположенных вдоль направления распространения волн. Причем линзы выполнены в виде кубоида с величиной стенки, лежащей в диапазоне от 0.85λ до 1.3λ, где λ...
Тип: Изобретение
Номер охранного документа: 0002591282
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6929

Способ определения и восстановления положения горизонтальной оси линейного инженерного объекта

Изобретение относится к области геодезического контроля и может быть использовано для определения и восстановления положения горизонтальной оси любого сложного инженерного линейного объекта. В заявленном способе определения и восстановления положения горизонтальной оси линейного инженерного...
Тип: Изобретение
Номер охранного документа: 0002591585
Дата охранного документа: 20.07.2016
+ добавить свой РИД