×
20.04.2016
216.015.34c4

Результат интеллектуальной деятельности: ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод статора содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат. Обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами, для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, во внутренней части статора расположен ротор. 4 ил.
Основные результаты: Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известна конструкция термоэмиссионного реактора-преобразователя с плоскими протяженными электрогенерирующими элементами с высокими выходными энергетическими характеристиками и большим заполнением активной зоны ядерным топливом (патент РФ №2030018, H01J 45/00, 27.02.1995 г.). Термоэмиссионный реактор-преобразователь содержит герметичный цилиндрический корпус, заполненный парами цезия. Внутри него размещены плоскопараллельные пластины с полостями для прокачки жидкометаллического теплоносителя, на которых жестко через изолирующий слой закреплены плоские протяженные коллекторы, а между ними помещены эмиттерные оболочки швеллерной формы боковыми рабочими поверхностями эквидистантно плоскостям коллекторов. Оболочки заполнены ядерным топливом. Коммутирующие проводники выполнены в виде гофрированных лент с чередованием участков для закрепления вдоль оболочек эмиттеров и свободных участков, расположенных между гофрами, с ортогональными отростками для соединения с коллекторами. Конструкция также содержит систему охлаждения коллекторов.

Недостатком этой конструкции является система охлаждения коллекторов, содержащая широкие полости, через которые прокачивается жидкометаллический теплоноситель, в плоских пластинах, на которых закреплены коллекторы. Другой не до конца решенной проблемой в ней является проблема отработки и испытания электрогенерирующих элементов и термоэмиссионного реактора-преобразователя в целом в лабораторных стендовых условиях с электронагревом. Она решена лишь частично, а именно в ее вакуумной части. Полномасштабные стендовые испытания с электронагревом в этой конструкции оказываются невозможными. Остается также проблема вывода газообразных осколков деления из ядерного топлива.

Известен термоэмиссионный электрогенерирующий канал активной зоны ядерного реактора (Грязнов Г.М., Пупко В.Я. ТОПАЗ-1 - советская космическая ядерно-энергетическая установка. Природа, 1991, №10, с. 29-36). Электрогенерирующий канал активной зоны ядерного реактора содержит последовательно соединенные электрогенерирующие элементы, содержащие источники тепла в виде тепловыделяющего элемента, оболочки которых являются катодами, и отделенные от них кольцевым зазором аноды, через изолирующие прокладки соединенные с корпусом электрогенерирующего канала, охлаждаемым жидкометаллическим теплоносителем, в котором кольцевой зазор между анодом и катодом промывается парами цезия, подаваемыми из цезиевого термостата с одного торца электрогенерирующего канала и сбрасываемыми в окружающую среду на другом торце электрогенерирующего канала.

Недостатками такого устройства являются расходная схема циркуляции рабочего тела электрогенерирующего канала цезия, относительно низкая эффективность преобразования энергии.

Наиболее близким по технической сущности к заявляемому устройству является термоэмиссионный преобразователь (патент США №5578886, US 08/190049, 18.02.1993 г.). Известное техническое решение содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, причем в аноде имеется по крайней мере несколько отверстий, через которые в зазор подается пар цезия из цезиевого термостата.

Недостатками этого решения являются наличие внешнего контура циркуляции пара цезия, подвод цезия к отверстиям анода в теплую фазу по каналам со стороны средств отвода тепла, пониженная эффективность преобразования энергии вследствие перегрева пара цезия относительно температуры насыщения при проходе по подводящим каналам.

Наиболее близким по технической сущности к заявляемому способу является способ диагностики теплового состояния турбогенераторов, реализованный в устройстве для диагностики теплового состояния электрической машины (авт. свид. СССР 855875, Н02К 15/00, 15.08.1981 г.), заключающийся в том, что посредством термочувствительных датчиков, размещенных на сердечнике статора турбогенератора, измеряют температуру, которую сравнивают с предварительно установленной температурой для соответствующих точек теплового контроля сердечника статора турбогенератора. При превышении температуры в одной из контролируемых точек по отношению к аварийной температуре в той же точке регулируют возбуждение турбогенератора путем изменения тока ротора, что, в свою очередь, приводит к изменению реактивной мощности турбогенератора. Изменение реактивной мощности влечет за собой изменение потерь в сердечнике статора, а следовательно, приводит к возникновению переходного теплового процесса в сердечнике статора турбогенератора. Информацию о результатах диагноза регистрируют.

Задача изобретения - расширение функциональных возможностей термоэмиссионного магнитопровода статора в составе электромеханических преобразователей энергии, возможность к подвозбуждению некоторых электромеханических преобразователей энергии (ЭМПЭ) (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Техническим результатом является повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%, и при применении на роторе постоянных магнитов обеспечивается защита от их теплового размагничивания, а также защита от повышенной линейной токовой нагрузки электромеханических преобразователей энергии.

Поставленная задача решается и указанный результат достигается тем, что в термоэмиссионном магнитопроводе статора, содержащем обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, согласно изобретению обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем ЭМПЭ через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.

Поставленная задача также решается способом диагностики температуры магнитопровода статора, по которому с помощью термочувствительных датчиков, размещенных на магнитопроводе статора, измеряют температуру, которую сравнивают с допустимой областью значений температуры магнитопровода статора, в котором в отличие от прототипа диагностику температуры магнитопровода статора производят посредством термоэмиссионного преобразователя, состоящего из обогреваемого катода, отделенного от него зазором, заполненным парами цезия, охлаждаемого анода, электрически соединенного с подвозбудителем ЭМПЭ через амперметр и замкнутого на катоде, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора и производят его диагностику в режиме реального времени.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез термоэмиссионного магнитопровода статора, на фиг. 2 - продольный разрез термоэмиссионного магнитопровода статора, на фиг. 3 изображена структурная схема, на фиг. 4 показано как замыкаются аксиальные каналы.

Предложенное устройство (фиг. 1) содержит: ротор 1, магнитопровод статора 2, состоящий из пазов 3, в которые уложена обмотка 4. Магнитопровод статора 2 установлен в обогреваемый катод 5, зазор 6, заполненный парами цезия, охлаждаемый анод 7, трубки 8 для подачи паров цезия в зазор 6 из цезиевого термостата 9 (фиг. 2). Аксиальные каналы 10 установлены поверх охлаждаемого анода 7 и подсоединены к емкости хладагента 11, кроме того, обогреваемый катод 5 и охлаждаемый анод 7 электрически соединены с подвозбудителем ЭМПЭ 12 через амперметр 13 (фир. 3).

Предложенное устройство работает следующим образом: при вращении ротора 1, по магнитопроводу статора 2, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 4 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 4 начинает протекать ток, при этом создаются тепловые потери в обмотках 4, обусловленные током в обмотках 4 и их активными сопротивлениями, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 2, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 2 и удельными потерями материала магнитопровода статора 2, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 2. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при нагреве магнитопровода статора 2, тепловая энергия переходит на обогреваемый катод 5, в результате возникает термоэлектронной эмиссии с поверхности металла, обогреваемого катода 5. Электроны, преодолевая межэлектродное пространство в зазоре 6, заполненном парами цезия, попадают на поверхность охлаждаемого анода 7, создавая на нем избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Протекание хладагента по аксиальным каналам 10, установленным поверх охлаждаемого анода 7 и подсоединенным к емкости хладагента 11, обеспечивает охлаждение охлаждаемого анода 7. Тем самым во внешней цепи возникает электрический ток, который идет на подвозбуждение ЭМПЭ 12 через амперметр 13. По показаниям амперметра 13 отслеживается охлаждение манитопровода статора 2, т.е. существует допустимая область значений силы тока, которая зависит от температуры магнитопровода статора 2. Если амперметр 13 показывает значения за пределами допустимой области, значит охлаждение манитопровода статора 2 осуществляется не в полном объеме. Это позволяет производить диагностику манитопровода статора 2 в режиме реального времени.

Кроме того, подвод паров цезия в зазор 6 обеспечивается посредством трубок 8 из цезиевого термостата 9.

Пример конкретной реализации способа диагностики температуры магнитопровода статора.

Термоэмиссионный магнитопровод статора генератора мощностью 30 кВт изготавливают путем прессовки электротехнической стали марки 2413, толщиной 0,5 мм, изолировка листов - оксидирование, в результате получают термоэмиссионный магнитопровод статора с длиной 210 мм, наружный диаметр 406 мм, внутренний диаметр 335 мм, число пазов 45. В обогреваемый катод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, поверх катода монтируют охлаждаемый анод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, посредством 6 клиньев из циклоолефинового сополимера, по окружности, толщиной 1 мм, в результате образовывается зазор. Для герметизации зазора с торцов термоэмиссионного магнитопровода статора монтируют пластинки, к одной из пластин монтируют трубки, которые соединены с цезиевым термостатом, цезиевый термостат монтирован с торца термоэмиссионного магнитопровода статора. На внешней стороне охлаждаемого анода монтированы аксиальные каналы диаметром 10 мм, по периметру окружности охлаждаемого анода, аксиальные каналы соединены к емкости хладагента. Кроме того, обогреваемый катод и охлаждаемый анод электрически соединены с подвозбудителем ЭМПЭ, через амперметр. В номинальном режиме температура термоэмиссионного магнитопровода статора составляет 80°С, выделяем допустимую область в +/-10°С, показания амперметра в этом случае будет 3 А, +/-0,25 А. При увеличении температуры на 20°С ток увеличивается на 0,5 А, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора, что позволяет производить его диагностику в режиме реального времени.

Итак, заявляемое изобретение позволяет расширить функциональные возможности термоэмиссионного магнитопровода статора, в составе электромеханических преобразователей энергии, в том числе возможность к самовозбуждению некоторых ЭМПЭ (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора. ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
Источник поступления информации: Роспатент

Показаны записи 61-70 из 141.
20.05.2015
№216.013.4d6b

Способ изготовления лопаток газотурбинного двигателя

Изобретение относится к машиностроению и может быть использовано при изготовлении лопаток из алюминиевых сплавов для монодисков компрессоров газотурбинных двигателей. Изготавливают заготовку лопатки, имеющую перо предварительной формы и хвостовик. Для этого цилиндрическую заготовку подвергают...
Тип: Изобретение
Номер охранного документа: 0002551333
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5213

Устройство охлаждения электрической машины

Изобретение относится к способам охлаждения электрических машин, в частности генераторов авиационного двигателя, и касается особенностей конструктивного выполнения их системы охлаждения. Технический результат: использование тепловой энергии авиационного двигателя (вспомогательного или...
Тип: Изобретение
Номер охранного документа: 0002552532
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.534d

Ротор высокоскоростного генератора

Изобретение относится к энергомашиностроению и может быть использовано в высокоскоростных электрических генераторах. Техническим результатом является повышение надежности и долговечности ротора высокоскоростного генератора, а также повышение его энергетических характеристик. Ротор...
Тип: Изобретение
Номер охранного документа: 0002552846
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.53b8

Способ лихеноиндикации степени загрязненности атмосферного воздуха

Изобретение относится к области оценки степени загрязненности атмосферного воздуха и может быть использовано при мониторинге атмосферного воздуха фоновой и урбанизированной территории. Способ предусматривает выделение территории пробной площадки размером 25×25 м, определение внешних признаков...
Тип: Изобретение
Номер охранного документа: 0002552953
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55b4

Емкостный двигатель

Изобретение относится к области электромашиностроения. Технический результат: повышение эксплуатационной надежности емкостного двигателя, повышение технологичности, упрощение конструкции. Емкостный двигатель содержит подвижный элемент в виде полого диэлектрического цилиндра, металлические...
Тип: Изобретение
Номер охранного документа: 0002553470
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56be

Матрица для высадки деталей сложного профиля

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении деталей сложного профиля. Матрица для высадки содержит вставку и бандажное кольцо. Вставка запрессована в бандажное кольцо с переменным по высоте бандажного кольца или вставки натягом....
Тип: Изобретение
Номер охранного документа: 0002553736
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56c2

Способ повышения показателя чувствительности магниторезистивных датчиков

Изобретение относится к измерительной технике, представляет собой способ повышения показателя чувствительности магниторезистивных датчиков и предназначено для использования в магнитометрических информационно-измерительных системах. При реализации способа измерительный мост запитывают повышенным...
Тип: Изобретение
Номер охранного документа: 0002553740
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.5909

Способ определения коэффициента извилистости русла реки

Изобретение относится к области гидрологии и может быть использовано при мониторинге, моделировании, количественной оценке водных ресурсов. Сущность: реку и ее притоки на цифровой топографической карте разбивают на квадраты размером δ. Вычисляют количество квадратов , покрывающих реку и каждый...
Тип: Изобретение
Номер охранного документа: 0002554334
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bdc

Способ контроля местоположения и состояния контейнера с грузом

Изобретение относится к области мониторинга местоположения груза и может быть использовано для определения местоположения груза, транспортируемого железнодорожным транспортом. Способ включает в себя этапы: вычисление текущих координат, формирование и передачу в информационно-аналитический...
Тип: Изобретение
Номер охранного документа: 0002555057
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5c07

Роторная система магнитоэлектрической машины

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в...
Тип: Изобретение
Номер охранного документа: 0002555100
Дата охранного документа: 10.07.2015
Показаны записи 61-70 из 191.
10.04.2015
№216.013.3b8d

Аэродинамическое транспортное средство (варианты)

Изобретение относится к транспортным средствам. Аэродинамическое транспортное средство по первому варианту содержит компрессор, соединенный с магистралью, грузовую или пассажирскую платформу, электродвигатели, с возможностью управления углом поворота заслонками сопл и регулирования угла и силы...
Тип: Изобретение
Номер охранного документа: 0002546733
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3b95

Энергодвигательная установка для дирижабля

Изобретение относится к транспортным средствам для воздухоплавания. Энергодвигательная установка для дирижабля содержит корпус дирижабля, пропеллеры, соединенные с электродвигателями, энерговырабатывающую установку, электрически связанную с электродвигателями. Силовая установка выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002546741
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e5a

Система на гибридных магнитных подшипниках

Изобретение относится к области электромашиностроения и может быть использовано в качестве подвеса ротора электрических машин. Технический результат: повышение срока службы, энергоэффективности системы. Система на магнитных подшипниках содержит вал, ротор, статор, установленный в рубашке...
Тип: Изобретение
Номер охранного документа: 0002547450
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fc5

Вентильно-индукторный двигатель

Изобретение относится к области электромашиностроения и может быть использовано в качестве электродвигателя автономных объектов. Техническим результатом является повышение надежности, энергоэффективности и выходной мощности вентильно-индукторного двигателя. Вентильно-индукторный двигатель...
Тип: Изобретение
Номер охранного документа: 0002547813
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.40b7

Шариковый электронно-оптический первичный преобразователь расхода прозрачных жидкостей

Использование относится к измерительной технике и может использоваться для измерения расхода любых электропроводных и неэлектропроводных, агрессивных и токсичных, огне- и взрывоопасных жидкостей в химической, нефтеперерабатывающей, фармакологической и других отраслях промышленности. Узел съема...
Тип: Изобретение
Номер охранного документа: 0002548055
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.4119

Устройство трехкоординатных перемещений

Изобретение относится к электротехнике и робототехнике и может быть использовано как трехкоординатный двигатель различных узлов. Технический результат состоит в возможности бесконтактного перемещения упругих стержней под действием электрического тока и возможность точной уставки координат...
Тип: Изобретение
Номер охранного документа: 0002548163
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.430c

Синхронный генератор с возбуждением от постоянных магнитов

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов. Технический результат: стабилизация выходного напряжения и активной мощности. Синхронный генератор с возбуждением от постоянных магнитов содержит...
Тип: Изобретение
Номер охранного документа: 0002548662
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4316

Генератор (варианты)

Изобретение относится к электротехнике, и может быть использовано в автономных системах электроснабжения. Технический результат состоит в повышении к.п.д. и удельной массы генератора, обеспечивающего преобразования энергии возмущений внешней среды любого направления в электрическую энергию....
Тип: Изобретение
Номер охранного документа: 0002548672
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.456c

Способ и устройство для определения характеристик и границы устойчивой работы ступени осевого компрессора в составе гтд

Изобретение относится к испытательным стендам для определения характеристик и границы устойчивой работы компрессора в составе газотурбинного двигателя. Для смещения рабочей точки по характеристике ступени компрессора к границе устойчивой работы необходимо ввести рабочее тело (воздух) в...
Тип: Изобретение
Номер охранного документа: 0002549276
Дата охранного документа: 27.04.2015
27.04.2015
№216.013.45c3

Способ торможения ротора электрической машины на магнитных подшипниках

Изобретение относится к области электротехники и может быть использовано для торможения ротора электромеханического преобразователя энергии на магнитных подшипниках. Технический результат - мгновенный останов ротора, а также возможность применения во всех типах электромеханических...
Тип: Изобретение
Номер охранного документа: 0002549363
Дата охранного документа: 27.04.2015
+ добавить свой РИД