×
20.04.2016
216.015.34c4

Результат интеллектуальной деятельности: ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат - повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%. Термоэмиссионный магнитопровод статора содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат. Обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами, для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, во внутренней части статора расположен ротор. 4 ил.
Основные результаты: Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известна конструкция термоэмиссионного реактора-преобразователя с плоскими протяженными электрогенерирующими элементами с высокими выходными энергетическими характеристиками и большим заполнением активной зоны ядерным топливом (патент РФ №2030018, H01J 45/00, 27.02.1995 г.). Термоэмиссионный реактор-преобразователь содержит герметичный цилиндрический корпус, заполненный парами цезия. Внутри него размещены плоскопараллельные пластины с полостями для прокачки жидкометаллического теплоносителя, на которых жестко через изолирующий слой закреплены плоские протяженные коллекторы, а между ними помещены эмиттерные оболочки швеллерной формы боковыми рабочими поверхностями эквидистантно плоскостям коллекторов. Оболочки заполнены ядерным топливом. Коммутирующие проводники выполнены в виде гофрированных лент с чередованием участков для закрепления вдоль оболочек эмиттеров и свободных участков, расположенных между гофрами, с ортогональными отростками для соединения с коллекторами. Конструкция также содержит систему охлаждения коллекторов.

Недостатком этой конструкции является система охлаждения коллекторов, содержащая широкие полости, через которые прокачивается жидкометаллический теплоноситель, в плоских пластинах, на которых закреплены коллекторы. Другой не до конца решенной проблемой в ней является проблема отработки и испытания электрогенерирующих элементов и термоэмиссионного реактора-преобразователя в целом в лабораторных стендовых условиях с электронагревом. Она решена лишь частично, а именно в ее вакуумной части. Полномасштабные стендовые испытания с электронагревом в этой конструкции оказываются невозможными. Остается также проблема вывода газообразных осколков деления из ядерного топлива.

Известен термоэмиссионный электрогенерирующий канал активной зоны ядерного реактора (Грязнов Г.М., Пупко В.Я. ТОПАЗ-1 - советская космическая ядерно-энергетическая установка. Природа, 1991, №10, с. 29-36). Электрогенерирующий канал активной зоны ядерного реактора содержит последовательно соединенные электрогенерирующие элементы, содержащие источники тепла в виде тепловыделяющего элемента, оболочки которых являются катодами, и отделенные от них кольцевым зазором аноды, через изолирующие прокладки соединенные с корпусом электрогенерирующего канала, охлаждаемым жидкометаллическим теплоносителем, в котором кольцевой зазор между анодом и катодом промывается парами цезия, подаваемыми из цезиевого термостата с одного торца электрогенерирующего канала и сбрасываемыми в окружающую среду на другом торце электрогенерирующего канала.

Недостатками такого устройства являются расходная схема циркуляции рабочего тела электрогенерирующего канала цезия, относительно низкая эффективность преобразования энергии.

Наиболее близким по технической сущности к заявляемому устройству является термоэмиссионный преобразователь (патент США №5578886, US 08/190049, 18.02.1993 г.). Известное техническое решение содержит обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, причем в аноде имеется по крайней мере несколько отверстий, через которые в зазор подается пар цезия из цезиевого термостата.

Недостатками этого решения являются наличие внешнего контура циркуляции пара цезия, подвод цезия к отверстиям анода в теплую фазу по каналам со стороны средств отвода тепла, пониженная эффективность преобразования энергии вследствие перегрева пара цезия относительно температуры насыщения при проходе по подводящим каналам.

Наиболее близким по технической сущности к заявляемому способу является способ диагностики теплового состояния турбогенераторов, реализованный в устройстве для диагностики теплового состояния электрической машины (авт. свид. СССР 855875, Н02К 15/00, 15.08.1981 г.), заключающийся в том, что посредством термочувствительных датчиков, размещенных на сердечнике статора турбогенератора, измеряют температуру, которую сравнивают с предварительно установленной температурой для соответствующих точек теплового контроля сердечника статора турбогенератора. При превышении температуры в одной из контролируемых точек по отношению к аварийной температуре в той же точке регулируют возбуждение турбогенератора путем изменения тока ротора, что, в свою очередь, приводит к изменению реактивной мощности турбогенератора. Изменение реактивной мощности влечет за собой изменение потерь в сердечнике статора, а следовательно, приводит к возникновению переходного теплового процесса в сердечнике статора турбогенератора. Информацию о результатах диагноза регистрируют.

Задача изобретения - расширение функциональных возможностей термоэмиссионного магнитопровода статора в составе электромеханических преобразователей энергии, возможность к подвозбуждению некоторых электромеханических преобразователей энергии (ЭМПЭ) (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Техническим результатом является повышение энергоэффективности, преобразование тепловых потерь в повышение КПД ЭМПЭ на 1-2%, и при применении на роторе постоянных магнитов обеспечивается защита от их теплового размагничивания, а также защита от повышенной линейной токовой нагрузки электромеханических преобразователей энергии.

Поставленная задача решается и указанный результат достигается тем, что в термоэмиссионном магнитопроводе статора, содержащем обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, согласно изобретению обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем ЭМПЭ через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.

Поставленная задача также решается способом диагностики температуры магнитопровода статора, по которому с помощью термочувствительных датчиков, размещенных на магнитопроводе статора, измеряют температуру, которую сравнивают с допустимой областью значений температуры магнитопровода статора, в котором в отличие от прототипа диагностику температуры магнитопровода статора производят посредством термоэмиссионного преобразователя, состоящего из обогреваемого катода, отделенного от него зазором, заполненным парами цезия, охлаждаемого анода, электрически соединенного с подвозбудителем ЭМПЭ через амперметр и замкнутого на катоде, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора и производят его диагностику в режиме реального времени.

Существо изобретения поясняется чертежами. На фиг. 1 изображен поперечный разрез термоэмиссионного магнитопровода статора, на фиг. 2 - продольный разрез термоэмиссионного магнитопровода статора, на фиг. 3 изображена структурная схема, на фиг. 4 показано как замыкаются аксиальные каналы.

Предложенное устройство (фиг. 1) содержит: ротор 1, магнитопровод статора 2, состоящий из пазов 3, в которые уложена обмотка 4. Магнитопровод статора 2 установлен в обогреваемый катод 5, зазор 6, заполненный парами цезия, охлаждаемый анод 7, трубки 8 для подачи паров цезия в зазор 6 из цезиевого термостата 9 (фиг. 2). Аксиальные каналы 10 установлены поверх охлаждаемого анода 7 и подсоединены к емкости хладагента 11, кроме того, обогреваемый катод 5 и охлаждаемый анод 7 электрически соединены с подвозбудителем ЭМПЭ 12 через амперметр 13 (фир. 3).

Предложенное устройство работает следующим образом: при вращении ротора 1, по магнитопроводу статора 2, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 4 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 4 начинает протекать ток, при этом создаются тепловые потери в обмотках 4, обусловленные током в обмотках 4 и их активными сопротивлениями, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 2, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 2 и удельными потерями материала магнитопровода статора 2, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 2. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при нагреве магнитопровода статора 2, тепловая энергия переходит на обогреваемый катод 5, в результате возникает термоэлектронной эмиссии с поверхности металла, обогреваемого катода 5. Электроны, преодолевая межэлектродное пространство в зазоре 6, заполненном парами цезия, попадают на поверхность охлаждаемого анода 7, создавая на нем избыток отрицательных зарядов и увеличивая его отрицательный потенциал. Протекание хладагента по аксиальным каналам 10, установленным поверх охлаждаемого анода 7 и подсоединенным к емкости хладагента 11, обеспечивает охлаждение охлаждаемого анода 7. Тем самым во внешней цепи возникает электрический ток, который идет на подвозбуждение ЭМПЭ 12 через амперметр 13. По показаниям амперметра 13 отслеживается охлаждение манитопровода статора 2, т.е. существует допустимая область значений силы тока, которая зависит от температуры магнитопровода статора 2. Если амперметр 13 показывает значения за пределами допустимой области, значит охлаждение манитопровода статора 2 осуществляется не в полном объеме. Это позволяет производить диагностику манитопровода статора 2 в режиме реального времени.

Кроме того, подвод паров цезия в зазор 6 обеспечивается посредством трубок 8 из цезиевого термостата 9.

Пример конкретной реализации способа диагностики температуры магнитопровода статора.

Термоэмиссионный магнитопровод статора генератора мощностью 30 кВт изготавливают путем прессовки электротехнической стали марки 2413, толщиной 0,5 мм, изолировка листов - оксидирование, в результате получают термоэмиссионный магнитопровод статора с длиной 210 мм, наружный диаметр 406 мм, внутренний диаметр 335 мм, число пазов 45. В обогреваемый катод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, поверх катода монтируют охлаждаемый анод, из тугоплавкого металла молибдена марки С52, толщиной 5 мм, посредством 6 клиньев из циклоолефинового сополимера, по окружности, толщиной 1 мм, в результате образовывается зазор. Для герметизации зазора с торцов термоэмиссионного магнитопровода статора монтируют пластинки, к одной из пластин монтируют трубки, которые соединены с цезиевым термостатом, цезиевый термостат монтирован с торца термоэмиссионного магнитопровода статора. На внешней стороне охлаждаемого анода монтированы аксиальные каналы диаметром 10 мм, по периметру окружности охлаждаемого анода, аксиальные каналы соединены к емкости хладагента. Кроме того, обогреваемый катод и охлаждаемый анод электрически соединены с подвозбудителем ЭМПЭ, через амперметр. В номинальном режиме температура термоэмиссионного магнитопровода статора составляет 80°С, выделяем допустимую область в +/-10°С, показания амперметра в этом случае будет 3 А, +/-0,25 А. При увеличении температуры на 20°С ток увеличивается на 0,5 А, при этом по изменению тока судят о тепловом состоянии термоэмиссионного магнитопровода статора, что позволяет производить его диагностику в режиме реального времени.

Итак, заявляемое изобретение позволяет расширить функциональные возможности термоэмиссионного магнитопровода статора, в составе электромеханических преобразователей энергии, в том числе возможность к самовозбуждению некоторых ЭМПЭ (синхронная машина, машина постоянного тока), возможность регулирования интенсивности охлаждения статора. ЭМПЭ, возможность определения температуры магнитопровода статора без датчика, благодаря введению на внешней стороне статора термоэмиссионный преобразователь энергии.

Термоэмиссионный магнитопровод статора, содержащий обогреваемый катод, отделенный от него зазором, заполненным парами цезия, охлаждаемый анод, цезиевый термостат, отличающийся тем, что обогреваемый катод, зазор, заполненный парами цезия, и охлаждаемый анод расположены на внешней стороне магнитопровода статора с каналами для подачи паров цезия, а на охлаждаемом аноде расположены аксиальные каналы охлаждения, также охлаждаемый анод электрически соединен с подвозбудителем электромеханического преобразователя энергии через амперметр и замкнут на катоде, во внутренней части статора расположен ротор.
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
ТЕРМОЭМИССИОННЫЙ МАГНИТОПРОВОД СТАТОРА
Источник поступления информации: Роспатент

Показаны записи 91-100 из 141.
27.12.2015
№216.013.9da2

Способ настройки многоцелевого станка для пятикоординатной обработки

Изобретение относится к станкостроению и может быть использовано в многоцелевых станках, используемых для многокоординатной обработки. Способ заключается в том, что определяют координаты осей вращения рабочих органов станка, для чего осуществляют измерение координат произвольных точек...
Тип: Изобретение
Номер охранного документа: 0002571984
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9dab

Способ деформационно-термической обработки объемных полуфабрикатов из al-cu-mg сплавов

Изобретение относится к области металлургии, в частности к термически упрочняемым сплавам на основе алюминия, а именно к способу деформационно-термической обработки высокопрочных сплавов системы Al-Cu-Mg, используемых в качестве конструкционных материалов для деталей авиакосмической техники и...
Тип: Изобретение
Номер охранного документа: 0002571993
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c32f

Способ линейной сварки трением

Изобретение может быть использовано при сварке блисков. На диске и лопатке формируют выступы с поверхностями контакта при сварке трением с необходимым технологическим припуском Р на периферии свариваемых деталей. Приводят лопатку в линейное колебание относительно диска в заданном направлении...
Тип: Изобретение
Номер охранного документа: 0002574566
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c49c

Многосекционный синхронный двигатель

Изобретение относится к области электротехники, а именно к бесконтактным электродвигателям с возбуждением от постоянных магнитов, и может быть использовано в качестве погружного электродвигателя. Технический результат: повышение прочности конструкции многосекционного синхронного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574609
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c7e4

Устройство для чистки ствола орудия (варианты)

Группа изобретений относится к устройствам для обслуживания ствола орудия, а именно к устройствам для чистки ствола. Устройство содержит электродвигатель и планетарный редуктор, размещенные внутри чистящего ерша. Устройство также включает в себя энкодер, связанный с системой управления....
Тип: Изобретение
Номер охранного документа: 0002578919
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c977

Ротор электромеханического преобразователя энергии с постоянными магнитами (варианты)

Изобретение относится к энергомашиностроению и может быть использовано в электрических генераторах с постоянными магнитами. Технический результат: повышение синусоидальности кривой магнитной индукции в воздушном зазоре и снижение омических потерь в электрической машине от высших гармоник, а...
Тип: Изобретение
Номер охранного документа: 0002578131
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2ff1

Датчик скорости изменения ускорения

Изобретение относится к информационно-измерительной технике и вибрационной технике и предназначено для использования в приборостроении и машиностроении. Датчик скорости изменения ускорения содержит ротор с постоянными магнитами, статор с магнитопроводом, измерительную обмотку, при этом...
Тип: Изобретение
Номер охранного документа: 0002580212
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3327

Устройство наблюдения за распределением тепловых потоков в днище поршня для оценки эффективности теплозащитных покрытий на нем

Изобретение относится к устройствам, предназначенным для теплофизических исследований теплозащитных покрытий на днище поршня и наблюдения за распределением тепловых потоков в днище поршня по скорости повышения температуры его внутренней поверхности при нагреве с внешней стороны, и может быть...
Тип: Изобретение
Номер охранного документа: 0002582153
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.342d

Способ раскрутки-торможения колес шасси

Изобретение относится к системам привода шасси и касается предварительной раскрутки колес шасси при посадке и торможения после посадки. Перед посадкой каждое колесо шасси вращают с окружной скоростью, равной скорости самолета, с помощью установленных на них электрических машин, которые питают...
Тип: Изобретение
Номер охранного документа: 0002581996
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.35ab

Внутритрубное транспортное средство (варианты)

Группа изобретений относится к автономным устройствам для перемещения диагностического оборудования внутри трубопровода. Внутритрубное транспортное средство содержит полимерный приводной цилиндрический винт, установленный на приводном валу передаточного редуктора. За счет сцепления приводного...
Тип: Изобретение
Номер охранного документа: 0002581757
Дата охранного документа: 20.04.2016
Показаны записи 91-100 из 191.
10.09.2015
№216.013.7786

Способ модификации поверхности изделий из титановых сплавов в тлеющем разряде

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, работающих в условия износа. Способ модификации поверхности изделий из титановых сплавов...
Тип: Изобретение
Номер охранного документа: 0002562187
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7bdc

Термоэлектрический генератор автомобиля

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано для обеспечения электрической энергией узлов системы электроснабжения автомобиля. Технический результат: повышение надежности, минимизация количества узлов термоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002563305
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d12

Устройство для линейной сварки трением блисков

Изобретение может быть использовано при изготовлении сваркой трением блисков, преимущественно для роторов газотурбинных двигателей. Неподвижно закрепленный на станине узел вращения диска блиска выполнен в виде сменной револьверной головки, установленной с помощью втулки в сменном корпусе,...
Тип: Изобретение
Номер охранного документа: 0002563615
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e1f

Управляемый магнитный подшипник на постоянных магнитах и способ управления им

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках, и может быть использовано для управления положением ротора в магнитных подшипниках. Технический результат: снижение массогабаритных показателей,...
Тип: Изобретение
Номер охранного документа: 0002563884
Дата охранного документа: 27.09.2015
20.10.2015
№216.013.82da

Экзоскелет с электропневматической системой управления

Изобретение относится к медицинской технике, а именно к экзоскелетам, и может быть использовано для осуществления ходьбы и реабилитации людей с нарушениями опорно-двигательного аппарата, а также в качестве универсальной транспортной платформы. Экзоскелет, состоящий из силового каркаса, который...
Тип: Изобретение
Номер охранного документа: 0002565101
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.870e

Устройство и способ полета в воздухе с возможностью вертикального взлета и посадки

Изобретение относится к области авиации, в частности к конструкциям и способам полета летательных аппаратов вертикального взлета и посадки. Способ полета включает создание воздушного потока, направленного сверху вниз, соосными движителями с лопатками, вращающимися в противоположные стороны....
Тип: Изобретение
Номер охранного документа: 0002566177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8755

Способ утилизации тепловой энергии, вырабатываемой электрической станцией

Способ включает дополнительный подогрев греющего агента перед вакуумным деаэратором в теплонасосной установке, в которой в качестве источника низкопотенциальной теплоты используют нагретую циркуляционную воду после конденсатора турбины. Теплоту нагретой циркуляционной воды утилизируют в...
Тип: Изобретение
Номер охранного документа: 0002566248
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8758

Способ нагрева сетевой воды на тепловой электрической станции

Способ включает конденсацию отработавшего в турбине пара в конденсаторе. Основной конденсат турбины нагревают в подогревателях низкого давления паром регенеративных отборов, сетевую воду нагревают в сетевых подогревателях паром отопительных отборов турбины. При этом к вакуумному деаэратору...
Тип: Изобретение
Номер охранного документа: 0002566251
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.8809

Универсальный электрошариковый первичный преобразователь расхода электропроводной жидкости

Изобретение относится к измерительной технике и может использоваться в расходометрии любых электропроводных жидкостей в химической, фармацевтической, пищевой и других областях промышленности, в жилищно-коммунальном хозяйстве в автоматических системах учета потребления холодной и горячей воды в...
Тип: Изобретение
Номер охранного документа: 0002566428
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8d2c

Трехфазное симметрирующее устройство и способ управления им

Изобретение относится к области электротехники и может быть использовано для устранения несимметрии токов и напряжений в трехфазных сетях. Технический результат - повышение быстродействия и энергетических показателей, улучшение электромагнитной совместимости. Трехфазное симметрирующее...
Тип: Изобретение
Номер охранного документа: 0002567747
Дата охранного документа: 10.11.2015
+ добавить свой РИД