×
20.04.2016
216.015.3422

Результат интеллектуальной деятельности: СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего формирование тонких безволновых пленок жидкости высокой равномерности и качества. Технический результат - обеспечение более интенсивного, контролируемого и экономичного охлаждения. 1 ил.
Основные результаты: Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

В последние десятилетия существенное развитие получило использование двухфазных потоков для охлаждения высоконапряженных по тепловым потокам электронных компонентов, таких как компьютерные чипы, силовая электроника (транзисторы, тиристоры), чипы конверторов и инверторов в гибридных автомобилях, мощные лазеры и др. Ведутся исследования, в которых для охлаждения электронных компонентов используется пленка жидкости, увлекаемая потоком газа в микро- и мини-каналах. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. В таких системах жидкость вводится в поток газа с использованием специального устройства - пленкоформирователя. Основной задачей данного устройства является обеспечить равномерное распределение жидкости поперек канала, а также ввести жидкость без излишней дестабилизации границы раздела газ-жидкость. Неравномерность жидкости и дестабилизация границы раздела газ-жидкость могут привести к нежелательным разрывам тонкой пленки жидкости. Обычно роль такого устройства выполняет плоская щель в подложке под острым углом к потоку газа, плоская пластина, установленная параллельно подложке или отверстие в подложке. Во всех случаях устройство пленкоформирователя обладает целым рядом недостатков и, как правило, не обеспечивает нужного качества создаваемой пленки. Например, проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м. Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки. Экспериментально было установлено, что сразу после щелевого сопла жидкости для канала высотой 1·10-4 м формировалось неустойчивое течение двухфазного потока.

Известен способ, описанный в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости. Тонкая пленка диэлектрической жидкости FC-72 движется со спутным потоком газа (азота) в микроканале с электронными тепловыделяющими элементами.

Наиболее близкое техническое решение, которое можно рассматривать как прототип, описано в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, которая создается за счет движения пара в мини- или микроканале. Тонкая пленка жидкости движется с потоком пара в микроканале с электронными тепловыделяющими элементами, расположенными либо на одной стороне канала, либо на двух противоположных сторонах канала. Тонкая пленка жидкости формируется за счет использования щелевого пленкоформирователя.

Недостатки описанных выше способов:

1) усложнение конструкции и, как следствие, дороговизна способа за счет использования пленкоформирователя;

2) проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м.

Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки.

Задачей заявляемого изобретения является обеспечение более интенсивного, контролируемого и экономичного охлаждения электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Поставленная задача решается тем, что в способе охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, согласно изобретению в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

Использование конденсатора пара в качестве пленкоформирователя позволяет создавать ровные, равномерные по ширине, практически идеально гладкие (безволновые) тонкие пленки жидкости.

Известно, что в тонких пленках жидкости (порядка 1·10-4 м) тепло передается практически только теплопроводностью. В результате коэффициент теплоотдачи можно описать следующей зависимостью:

где δ - толщина слоя жидкости; λ - коэффициент теплопроводности жидкости (Вт/м К).

Зависимость показывает, что снижение толщины пленки на порядок, например от 1·10-4 м до 1·10-5 м, ведет к интенсификации испарения на порядок.

Для обеспечения равномерности пленки по ширине канала достаточно обеспечить равномерное охлаждение конденсатора пара. Конденсатор пара может создавать очень тонкие пленки, от 1·10-5 м до 5·10-5 м и менее. Практически толщина в меньшую сторону не ограничена и может составлять даже несколько мкм. Толщина пленки может точно регулироваться и достаточно точно рассчитываться с помощью имеющейся математической модели (Marchuk I.V., Lyulin Y.V., and Kabov O.A., Theoretical and Experimental Study of Convective Condensation inside Circular Tube, Interfacial Phenomena and Heat Transfer, vol. 1(2), pp. 153-171, 2013). Регулировка толщины пленки осуществляется простой регулировкой температуры стенки конденсатора пара.

Экспериментальные и теоретические исследования показывают, что конденсация подавляет неустойчивость в пленке жидкости. Это связано с тем, что утонение пленки в силу ее неустойчивости вызывает интенсификацию теплообмена в этой области и выпадающий конденсат частично сглаживает утонение пленки. Этот факт потенциально позволяет создавать пленки очень высокого качества, в том числе и при относительно больших расходах жидкости. Можно ожидать снижение расхода жидкости, необходимой для охлаждения электронных компонентов в таких системах, за счет более высокого качества создаваемых пленок. Это, в свою очередь, приведет к снижению энергозатрат на прокачку жидкости и газа и повышению общей эффективности системы.

Данные системы могут работать как двухфазные однокомпонентные системы. В этом случае в качестве рабочего тела используется чистая жидкость, т.е. без неконденсирующихся примесей. В качестве рабочего тела может использоваться смесь жидкостей. Использование добавки неконденсирующегося газа может позволить существенно расширить параметры системы и управляемость ее работы. Известно, что присутствие неконденсирующегося газа существенно снижает интенсивность теплообмена при конденсации, но действие газа снижается с ростом скорости парогазовой смеси. Снижение интенсивности конденсации позволяет более точно контролировать толщину пленки и ее равномерность за счет снижения к требованию по распределению температуры на стенке конденсатора. Регулировкой концентрации неконденсирующегося газа можно добиться ситуации, когда отклонения температуры на стенке конденсатора от 0,1°C до 0,5°C практически не будут влиять на толщину пленки. В таких случаях может использоваться обычное водяное охлаждение конденсатора, где нагрев воды, абсорбирующей тепло конденсации, в пределах от 1°C до 0,5°C вдоль тракта охлаждения не приведет к заметным изменениям толщины пленки. Для очень точной регулировки толщины пленки в однокомпонентных системах для охлаждения конденсатора могут использоваться Пельтье-элементы с последующим их охлаждение водой или воздухом.

На фиг. 1 представлен общий вид системы охлаждения микроэлектронного оборудования с использованием конденсатора-пленкоформирователя, где обозначено: 1 - подложка, 2 - электронный компонент, 3 - конденсатор пара, 4 - система охлаждения конденсатора пара, 5 - мини- или микроканал, 6 - конденсирующаяся и испаряющаяся пленка жидкости, 7 - дополнительный подогреватель, 8 - резервуар пара, 9 - насос, 10 - вход пара или парогазовой смеси.

Способ осуществляется следующим образом.

В начальном состоянии, перед началом работы, жидкость перетекает в нижнюю часть системы. Включается дополнительный подогреватель 7, который превращает жидкость в пар. Пар или парогазовая смесь равномерно распределяется по системе. Включается насос 9 и начинает подавать пар или парогазовую смесь через вход 10 в микроканал 5. Резервуар пара 8 служит для более устойчивой работы насоса и может быть конструктивно совмещен с подогревателем 7. Включается система охлаждения конденсатора 4, конденсатор 3 начинает генерировать пленку жидкости 6, которая увлекается частью не сконденсировавшегося пара или парогазовой смеси. Пленка натекает на электронный компонент 2, расположенный на подложке 1, и охлаждает его. При этом часть жидкости превращается в пар и уходит по каналу к насосу. Часть жидкости может не испариться и также уходит по каналу в сторону насоса под действием потока пара и гравитации. Эта часть жидкости превращается в пар в подогревателе 7 таким образом, чтобы на вход насоса всегда подавался чистый пар или парогазовая смесь.

Использование заявляемого изобретения позволяет обеспечить более интенсивное, контролируемое и экономичное охлаждение электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 96.
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
19.01.2018
№218.015.ffbe

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные...
Тип: Изобретение
Номер охранного документа: 0002629516
Дата охранного документа: 29.08.2017
19.01.2018
№218.015.fff9

Установка для дробления, селективного помола, сушки и сепарации полиминеральных промышленных отходов

Изобретение относится к горно-обогатительной технике и может быть использовано для селективного дробления, помола, сушки и сепарации отходов обогащения полиминеральных отходов, в частности углей, углистых аргиллитов, отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002629570
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0872

Противоточная колонна с динамически управляемым распределителем жидкости

Изобретение относится к противоточной колонне с распределителем жидкости. Противоточная колонна содержит динамически управляемый распределитель жидкости, включающий в себя трубу для подачи жидкости и множество распределительных органов, которые расположены в колонне над набивкой с возможностью...
Тип: Изобретение
Номер охранного документа: 0002631701
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09ac

Способ сжигания угля, подвергнутого механической и плазменной обработке

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь...
Тип: Изобретение
Номер охранного документа: 0002631959
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1172

Устройство для стабилизации вихревого потока

Изобретение относится к прикладной газодинамике, в частности к устройству для стабилизации вихревого потока. Устройство для стабилизации вихревого потока содержит корпус с входным и выходным патрубками для вихревого потока и направляющий элемент, расположенный внутри корпуса. Корпус выполнен в...
Тип: Изобретение
Номер охранного документа: 0002634021
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.162a

Двухступенчатая вихревая горелка

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках. Двухступенчатая вихревая горелка содержит камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана...
Тип: Изобретение
Номер охранного документа: 0002635178
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1728

Эффективный конденсатор пара для условий микрогравитации

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применятся в устройствах для охлаждения электроники. В конденсаторе пара, содержащем канал для протока пара, образованный поверхностью конденсации, поверхность конденсации имеет...
Тип: Изобретение
Номер охранного документа: 0002635720
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.176c

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и...
Тип: Изобретение
Номер охранного документа: 0002635621
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1a58

Устройство охлаждения одиночного мощного светодиода с интенсифицированной конденсационной системой

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного полупроводникового светодиода мощностью от...
Тип: Изобретение
Номер охранного документа: 0002636385
Дата охранного документа: 23.11.2017
Показаны записи 51-60 из 67.
29.12.2017
№217.015.f429

Интенсифицирующая теплообменная поверхность для удлинения динамического мениска

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым...
Тип: Изобретение
Номер охранного документа: 0002637802
Дата охранного документа: 07.12.2017
19.01.2018
№218.015.ffbe

Устройство для формирования микроручейкового течения жидкости в микро- и миниканалах

Изобретение относится к области электроники, в частности к микромасштабным охлаждающим устройствам таким, как микроканальные теплообменники. Изобретение заключается в том, что в канале, на одной из сторон, которая является поверхностью подложки тепловыделяющего элемента, выполнены продольные...
Тип: Изобретение
Номер охранного документа: 0002629516
Дата охранного документа: 29.08.2017
19.01.2018
№218.015.fff9

Установка для дробления, селективного помола, сушки и сепарации полиминеральных промышленных отходов

Изобретение относится к горно-обогатительной технике и может быть использовано для селективного дробления, помола, сушки и сепарации отходов обогащения полиминеральных отходов, в частности углей, углистых аргиллитов, отходов флотационного обогащения железных руд, каолинов, песков и др....
Тип: Изобретение
Номер охранного документа: 0002629570
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0872

Противоточная колонна с динамически управляемым распределителем жидкости

Изобретение относится к противоточной колонне с распределителем жидкости. Противоточная колонна содержит динамически управляемый распределитель жидкости, включающий в себя трубу для подачи жидкости и множество распределительных органов, которые расположены в колонне над набивкой с возможностью...
Тип: Изобретение
Номер охранного документа: 0002631701
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09ac

Способ сжигания угля, подвергнутого механической и плазменной обработке

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь...
Тип: Изобретение
Номер охранного документа: 0002631959
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.1172

Устройство для стабилизации вихревого потока

Изобретение относится к прикладной газодинамике, в частности к устройству для стабилизации вихревого потока. Устройство для стабилизации вихревого потока содержит корпус с входным и выходным патрубками для вихревого потока и направляющий элемент, расположенный внутри корпуса. Корпус выполнен в...
Тип: Изобретение
Номер охранного документа: 0002634021
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.162a

Двухступенчатая вихревая горелка

Изобретение относится к области теплоэнергетики и может найти применение в любой отрасли промышленности, связанной со сжиганием угольного топлива в вихревых топках. Двухступенчатая вихревая горелка содержит камеру с тангенциальными патрубками подвода окислителя и центральной подачей пропана...
Тип: Изобретение
Номер охранного документа: 0002635178
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1728

Эффективный конденсатор пара для условий микрогравитации

Изобретение относится к области мини- и микросистем, которые используются в энергетике и на транспорте и могут применятся в устройствах для охлаждения электроники. В конденсаторе пара, содержащем канал для протока пара, образованный поверхностью конденсации, поверхность конденсации имеет...
Тип: Изобретение
Номер охранного документа: 0002635720
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.176c

Способ синтеза магнитной жидкости на основе воды и магнитных наночастиц на углеродной матрице

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и...
Тип: Изобретение
Номер охранного документа: 0002635621
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1a58

Устройство охлаждения одиночного мощного светодиода с интенсифицированной конденсационной системой

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от одиночного полупроводникового светодиода мощностью от...
Тип: Изобретение
Номер охранного документа: 0002636385
Дата охранного документа: 23.11.2017
+ добавить свой РИД