×
20.04.2016
216.015.334f

Результат интеллектуальной деятельности: ПЛАЗМОЗАМЕЩАЮЩИЙ РАСТВОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к плазмозамещающим растворам, и может найти применение в трансфузиологии, при лечении гиповолемических состояний различной этиологии. Предложенный плазмозамещающий раствор включает гидроксиэтилкрахмал и натрий фумаровокислый в качестве электролита при следующем соотношении компонентов: гидроксиэтилкрахмал 58-62 г/л, натрий фумаровокислый 15-17 г/л, вода для инъекций до 1000 мл и имеет значение осмолярности 280-320 мосм/л. Изобретение обеспечивает восполнение объема циркулирующей жидкости и восстанавление гемоциркуляции и реологических показателей крови, а также оказывает специфический кардиотонический эффект, то есть резко увеличивает минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения, что эффективно улучшает сердечную деятельность и восстанавливает показатели кислотно-основного состояния организма. 2 табл.
Основные результаты: Плазмозамещающий раствор, включающий гидроксиэтилкрахмал и электролит, отличающийся тем, что в качестве электролита он содержит натрий фумаровокислый при следующем соотношении компонентов: и имеет значение осмолярности 280-320 мосм/л.

Заявляемое изобретение относится к медицине, а именно к плазмозамещающим растворам, и может найти применение в трансфузиологии, при лечении гиповолемических состояний различной этиологии.

При геморрагическом, травматическом, ожоговом или септическом шоке, при массивных кровопотерях используются средства волемического действия - плазмозамещающие растворы, в том числе растворы на основе гидроксиэтилированного крахмала (ГЭК). Плазмозамещающие растворы, содержащие ГЭК, известны в медицине более 20 лет [см., например, US 4167622, 1979; US 5218108, 1993; RU 2136293, 1999; WO 200047629; RU 2245714, 2005]. Они широко применяются в инфузионной терапии. С их помощью решаются проблемы восполнения объема циркулирующей жидкости, восстановления гемодинамики и реологических показателей крови при кровопотере и шоке. Нормализация кровообращения способствует ослаблению кислородной недостаточности. В последние годы фармацевтические разработки направлены на модификацию растворов ГЭК таким образом, чтобы решать узкие специфические проблемы.

Так, известна фармакологическая композиция, включающая гидроксиэтилкрахмал и физиологически приемлемый электролитный раствор, а также поверхностно-активное вещество - блок-сополимер окиси этилена и пропилена - взятое в соотношении с ГЭК от 1/1 до 1/10 [RU 2461383, МПК A61K 31/718, 2011]. В качестве физиологически приемлемого электролитного раствора композиция содержит 5,0-5,9 г/л хлорида натрия, 0,35-0,45 г/л хлорида калия, 0,20-0,60 г/л фосфата натрия и 0,35-0,70 г/л гидрокарбоната натрия. Приведены примеры получения растворов, содержащих от 2 мас.% до 20 мас.% ГЭК; концентрация блок-сополимера приведена в таком же диапазоне. Состав заявлен как плазмозамещающее средство, подобное проксанолам, имеющее широкий спектр действия, но указанный состав не применяется в случае кровопотери и шока.

Также известно плазмозамещающее средство на основе ГЭК со средней молекулярной массой (ММ) 130000 Да (дальтон), растворенного в гипертоническом изоонкотическом 7,2%-ном растворе хлорида натрия [RU 2431488, МПК A61K 31/718, 2010], который может быть успешно использован на догоспитальном этапе при инфузии небольшого объема, как правило, 4 мл/кг массы тела. Авторы считают, что быстрое восполнение объема циркулирующей крови, быстрый и стойкий волемический и гемодинамический эффект при инфузии небольшого объема указанного раствора достигается за счет возникновения временного градиента осмотического давления между плазмой крови и интерстициальными пространствами, вызывающего перемещение жидкости во внутрисосудистое русло. Примеры конкретного использования плазмозамещающего раствора в RU 2431488 не приводятся.

Однако клиническая практика использования гипертонических растворов (или, что то же, растворов с высокой осмолярностью) в настоящее время не является общепринятой. Вопрос о безопасности введения гиперосмолярных растворов на фоне острой почечной недостаточности, неизбежно развивающейся при шоке и массивной кровопотере, остается дискуссионным.

Кроме того, известно, что отягощающим следствием гиповолемии является кислородная недостаточность с последующими нарушениями окислительного метаболизма в тканях с развитием энергодефицита. Установлено, что эффективность лечения повышается, если величины таких гемодинамических показателей, как минутный объем кровообращения и ударный объем сердца, не только достигают исходных значений, но и превосходят их в наиболее ранние сроки лечения. В этих случаях повышается степень оксигенации тканей, позволяющая покрыть высокие метаболические потребности организма в кислороде. Исследования показали, что раннее достижение превышающих норму показателей сердечного выброса, доставки и потребления кислорода приводит к снижению летальности больных и уменьшает число послеоперационных осложнений [Shoemaker W.C. et al., Crit. Care Medicine, 1989, 977-993; 1988, 16, 1117; 1993, 21, 977].

Результат, на достижение которого направлено заявляемое изобретение, заключается в разработке плазмозамещающего раствора на основе ГЭК, обладающего, помимо способности восполнять объем циркулирующей жидкости и восстанавливать гемоциркуляцию и реологические показатели крови, способностью оказывать специфический кардиотонический эффект, то есть быстро и стойко увеличивать минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения.

Указанный результат достигается тем, что плазмозамещающий раствор, включающий гидроксиэтилкрахмал и электролит, в качестве электролита содержит натрий фумаровокислый при следующем соотношении компонентов:

гидроксиэтилкрахмал 58-62 г/л
натрий фумаровокислый 15-17 г/л
вода для инъекций до 1000 мл

и имеет значение осмолярности 280-320 мосм/л.

Известен полифункциональный плазмозамещающий раствор «Полиоксифумарин» [RU 2136291, МПК A61K 35/14, 1999], включающий растворенные в воде полиэтиленгликоль с ММ 20000±3000 Да и натрия фумарат в количестве 13,0-16,5 г/л, а также 5,4-6,6 г/л натрия хлорида, 0,108-0,132 г/л магния хлорида и 0,45-0,55 г/л калия иодида. «Полиоксифумарин» обладает гемодинамическим действием, восполняет минутный и ударный объем сердца до уровня нормы, а также обладает выраженным антигипоксантным действием и способен в силу этого к коррекции постгеморрагического ацидоза.

Полиоксифумарин, созданный на основе ПЭГ со сравнительно низкой ММ, уступает по своим гемодинамическим свойствам растворам гидрооксиэтилкрахмала, имеющим существенно большую молекулярную массу (130-200 тыс. Да). Поэтому в случаях массивной кровопотери для восполнения объема циркулирующей крови клиницисты предпочитают использовать растворы ГЭК. Кроме того, полиоксифумарин имеет высокую осмолярность (410 мосм/л) и в силу этого имеет ограничения по применению. Введение препарата противопоказано при черепно-мозговой травме и внутричерепной гипертензии. В условиях шока и кровопотери, когда снижен органный кровоток и обеспечение органов кислородом, избыточная осмонагрузка может сорвать реакции осморегуляции в организме. Поэтому, согласно инструкции по медицинскому применению, полиоксифумарин следует применять с особой осторожностью при хронической почечной недостаточности и хронических заболеваниях печени.

Однако снижение осмолярности плазмозамещающего раствора снижает скорость восполнения кровопотери за счет эндогенной жидкости, в то время как восстановление объема циркулирующей крови является одним из решающих факторов успешности проводимого лечения. Поэтому нельзя с уверенностью утверждать, что простое снижение осмолярности кровезаменителя повысит его лечебную эффективность. С другой стороны, хотя благоприятное влияние фумарата натрия на работу сердца известно из RU 2136291, включение его в плазмозамещающий раствор на основе ГЭК не очевидно, так как сам раствор ГЭК может оказывать гиперволюмический эффект, тем самым ослабляя производительность миокарда при лечении геморрагического шока.

В силу указанных причин способность заявляемого раствора быстро и стойко улучшать показатели работы сердца при лечении геморрагического шока оказалась неожиданной.

Все компоненты заявляемого раствора выпускаются промышленностью. В качестве ГЭК используется гидроксиэтилкрахмал с ММ 130000-200000 Да, отвечающий статье 07 Европейской фармакопеи. Натрий фумаровокислый можно использовать в виде соли, но возможно получение его гидроксида натрия и фумаровой кислоты в процессе приготовления плазмозамещающего раствора.

Исследование лечебной эффективности заявляемого плазмозамещающего раствора проводили на модели кровопотери, вызванной у животных кровопусканиями. Геморрагический шок у кроликов воспроизводили дробными кровопусканиями до снижения артериального давления до уровня 40-50 мм рт.ст. Состояние гипотензии поддерживали в течение 60 минут, после чего начинали внутривенное вливание заявляемого плазмозамещающего раствора в объеме, равном объему кровопотери.

Контрольной группе вводили тот же объем раствора ГЭК в 0,9%-ном растворе натрия хлорида.

До кровопотери, после нее и через 10 и 90 минут после окончания лечения определяли показатели системной гемодинамики кислородного режима, кислотно-основного состояния (таблица 1) и окислительного метаболизма (таблица 2).

Из таблицы 1 видно, что после кровопотери у животных как в основной, так и в контрольной группе минутный объем кровообращения (МОК) составлял в среднем 40% от уровня нормы. Ударный объем сердца (УО) снижался на 50%, а рабочий индекс левого желудочка сердца (РИЛЖ) не превышал 40% исходного. Компенсаторная вазоконстрикция в ответ на кровопотерю вызывала повышение общего периферического сопротивления сосудов (ОПС) кровотоку в среднем в 1,2-1,5 раза. В соответствии с нарушениями гемодинамики более чем в 2 раза снижался системный транспорт кислорода (Qo2) и его потребление (Vo2) организмом. У животных в состоянии геморрагического шока наблюдалось изменение буферных систем крови. Уменьшалось содержание стандартного бикарбоната (BS), нарастал дефицит буферных оснований (BE), снижался pH крови. Таким образом, к началу инфузионной терапии у кроликов развивались гипоксия и метаболический ацидоз.

Инфузии раствора ГЭК на фоне тяжелого геморрагического шока способствовали увеличению МОК и УО (табл. 1, серия 1). Наибольшее значение этих показателей наблюдались через 10 мин после окончания введения кровезаменителя. Однако затем МОК и УО начинали падать и через 90 мин после завершения инфузии эти показатели имели те же значения, как в период до лечения. Не достигали исходных значений и показатели РИЛЖ. В ответ на введение указанного раствора pH крови практически не изменялся. Дефицит буферных оснований и содержание стандартного бикарбоната продолжали увеличиваться, и к концу эксперимента их значения оказались ниже, чем в период до лечения (табл. 1, серия 1).

При введении ГЭК с фумаратом натрия (заявляемый раствор) величины МОК и УО через 10 мин после окончания инфузии на 20% превышали исходные значения. К 90-й минуте действие кровезаменителя начинало ослабевать, но оказалось более выраженным, чем при введении ГЭК без фумарата натрия (табл. 1, серия 2). Лечение заявляемым раствором благоприятно влияло на функцию сердечной мышцы: значения РИЛЖ увеличивались более чем в 2 раза и достигали исходных величин. У животных, леченных ГЭК без фумарата натрия, этот показатель увеличивался в 1,3 раза, что составляло чуть более 50% исходного.

В экспериментах с введением заявляемого раствора уже к 10 мин после окончания инфузии наблюдалось существенное снижение дефицита буферных оснований и увеличение pH крови (табл. 1, серия 2). Значение этих показателей сохранялись и через 90 мин наблюдения за животными. Лучшая коррекция показателей кислотно-основного состояния под действием раствора ГЭК с фумаратом натрия, по сравнению с введением раствора ГЭК, происходила в условиях равнозначно не восстановленного транспорта кислорода в организме. Эти данные позволяют предположить, что при лечении заявляемым раствором в условиях гипоксии более эффективно используется доставляемый к клетке кислород.

Общеизвестно, что сократительная способность миокарда - функция энергозависимая и определяется интенсивностью реакций окислительного фосфорилирования в митохондриях кардиомиоцитов. Поэтому, наряду с гемодинамическими характеристиками заявляемого раствора, оценивали его влияние на состояние энергообразования в митохондриях сердечной мышцы при лечении геморрагического шока.

Анализ изменений окислительного метаболизма митохондрий миокарда показал, что геморрагический шок вызывает снижение всех показателей митохондриального метаболизма (табл. 2). Наряду с уменьшением скорости активного дыхания (V3) отмечалось существенное подавление фосфорилирующей функции органелл, при этом скорость генерации энергии АДФ/t снижалась на 40-43%. Достоверное уменьшение коэффициента АДФ/О свидетельствовало об ухудшении сопряженности процессов окисления и фосфорилирования. Таким образом, снижение производительности сердца при постгеморрагической ишемии действительно сопровождалось нарушениями окислительного метаболизма и расстройствами энергетического обмена в кардиомиоцитах.

Адекватное возмещение кровопотери раствором, содержащим только ГЭК, приводило к существенному улучшению гемодинамики по сравнению с периодом до лечения (табл. 1, серия 1), однако при использовании заявляемого раствора ударный объем сердца и сердечный выброс оказались достоверно более высокими (табл. 1, серия 2). Введение раствора, не содержащего фумарата натрия, не улучшало основных показателей энергетического статуса митохондрий сердца. Как видно из табл. 2, коэффициент АДФ/О достоверно снизился на 17%, а АДФ/t, отражающий скорость генерации энергии, на 35%. Следовательно, синтез АТФ в кардиомиоцитах протекал на уровне, не превышающем фосфорилирующие возможности митохондрий животных в состоянии геморрагического шока. При введении животным заявляемого раствора окислительный метаболизм митохондрий восстанавливался практически до уровня нормы (табл. 2).

Представленные результаты позволяют заключить, что в условиях ослабления насосной функции миокарда, вызванной циркуляторной гипоксией при геморрагическом шоке, введение заявляемого раствора способствует поддержанию энергетического потенциала в миокардиоцитах и, таким образом, повышает эффективность работы сердца в постинфузионном периоде.

Таким образом, заявляемый раствор не только восполняет объем циркулирующей жидкости и восстанавливает гемоциркуляцию и реологические показатели крови, но и оказывает специфический кардиотонический эффект, то есть резко увеличивает минутный объем кровообращения и ударный объем сердца в короткий срок после начала лечения, что эффективно улучшает сердечную деятельность и восстанавливает показатели кислотно-основного состояния организма.

Плазмозамещающий раствор, включающий гидроксиэтилкрахмал и электролит, отличающийся тем, что в качестве электролита он содержит натрий фумаровокислый при следующем соотношении компонентов: и имеет значение осмолярности 280-320 мосм/л.
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
20.07.2015
№216.013.6309

Устройство для локализации разливов нефти на реке и способ его постановки

Группа изобретений относится к охране окружающей среды, в частности к ограждению части реки для предотвращения растекание нефти и нефтепродуктов по водной поверхности или в случае аварии на нефтепроводе, пересекающем реку. Устройство содержит трос и заграждение в виде соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002556900
Дата охранного документа: 20.07.2015
20.04.2016
№216.015.3350

Способ оценки эффективности микрофильтрующих устройств, предназначенных для переливания крови и ее компонентов

Изобретение относится к медицине, в частности к лабораторным методам оценки способности микрофильтрующих устройств удерживать микроагрегаты, присутствующие в переливаемой крови или ее компонентах. Способ заключается в том, что берут по крайней мере одну порцию исходной крови или ее компонента,...
Тип: Изобретение
Номер охранного документа: 0002582285
Дата охранного документа: 20.04.2016
19.01.2018
№218.016.0e5e

Способ лечения ишемической болезни нижних конечностей

Изобретение относится к медицине, а именно к ангиологии и может быть использовано для лечения ишемической болезни нижних конечностей. Способ включает внутримышечное введение взвеси аутологичных стволовых клеток периферической крови (СКПК) в несколько точек мышечного массива в зоне ишемии. Через...
Тип: Изобретение
Номер охранного документа: 0002633487
Дата охранного документа: 12.10.2017
Показаны записи 1-5 из 5.
20.07.2015
№216.013.6309

Устройство для локализации разливов нефти на реке и способ его постановки

Группа изобретений относится к охране окружающей среды, в частности к ограждению части реки для предотвращения растекание нефти и нефтепродуктов по водной поверхности или в случае аварии на нефтепроводе, пересекающем реку. Устройство содержит трос и заграждение в виде соединенных между собой...
Тип: Изобретение
Номер охранного документа: 0002556900
Дата охранного документа: 20.07.2015
20.04.2016
№216.015.3350

Способ оценки эффективности микрофильтрующих устройств, предназначенных для переливания крови и ее компонентов

Изобретение относится к медицине, в частности к лабораторным методам оценки способности микрофильтрующих устройств удерживать микроагрегаты, присутствующие в переливаемой крови или ее компонентах. Способ заключается в том, что берут по крайней мере одну порцию исходной крови или ее компонента,...
Тип: Изобретение
Номер охранного документа: 0002582285
Дата охранного документа: 20.04.2016
19.01.2018
№218.016.0e5e

Способ лечения ишемической болезни нижних конечностей

Изобретение относится к медицине, а именно к ангиологии и может быть использовано для лечения ишемической болезни нижних конечностей. Способ включает внутримышечное введение взвеси аутологичных стволовых клеток периферической крови (СКПК) в несколько точек мышечного массива в зоне ишемии. Через...
Тип: Изобретение
Номер охранного документа: 0002633487
Дата охранного документа: 12.10.2017
19.10.2019
№219.017.d84d

Способ лечения иммунной тромбоцитопении

Изобретение относится к области медицины, в частности к гематологии, и предназначено для лечения иммунной тромбоцитопении (ИТП). Проводят идентификацию аллельного полиморфизма генов гликопротеинов GpIIb T2622G и GpIa A1648G, ответственных за формирование систем НРА-3 и -5 соответственно. При...
Тип: Изобретение
Номер охранного документа: 0002703458
Дата охранного документа: 17.10.2019
04.05.2020
№220.018.1afa

Добавочный раствор для хранения концентрата тромбоцитов

Изобретение относится к медицине, а именно к растворам для ресуспендирования и хранения компонентов заготовленной донорской крови (добавочным растворам), и в частности для ресуспендирования и хранения концентрата тромбоцитов (тромбоцитного концентрата). Добавочный раствор для хранения...
Тип: Изобретение
Номер охранного документа: 0002720487
Дата охранного документа: 30.04.2020
+ добавить свой РИД