×
10.04.2016
216.015.30d7

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАЧАЛА КОНДЕНСАЦИИ В ПОРИСТОЙ СРЕДЕ

Вид РИД

Изобретение

№ охранного документа
0002580858
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде. Техническим результатом является повышение точности, а также снижение трудоёмкости измерения давления начала конденсации газоконденсатных смесей в пористой среде. Способ определения давления начала конденсации в пористой среде включает подачу исходной газоконденсатной смеси в пористую среду, подготовку пористой среды, размещение подготовленной пористой среды в рентгенопрозрачном кернодержателе, создание горного давления в пористой среде, подачу метана под давлением, равным пластовому давлению, создание и поддержание постоянного пластового давления в рекомбинаторе и в пористой среде, подачу исходной газоконденсатной смеси в пористую среду при давлении, равном пластовому, путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси, моделирование процесса истощения пористой среды при выбранном шаге снижения давления, прогрев рентгеновской трубки и сканирование пористой среды на каждом шаге снижения давления, регистрацию значения интенсивности рентгеновского излучения при выбранном давлении после каждого сканирования пористой среды, построение графика изменения интенсивности рентгеновского сигнала, проходящего через пористую среду, от давления следующим образом: по оси абсцисс откладывают значения давления Р (МПа) в процессе истощения пористой среды, по оси ординат - значения интенсивности рентгеновского излучения I (отн. ед.). Процесс истощения пористой среды производят до получения экстремума на графике, по которому определяют значение давления начала конденсации P (МПа). 1 ил., 1 табл.
Основные результаты: Способ определения давления начала конденсации в пористой среде, включающий подачу исходной газоконденсатной смеси в пористую среду, отличающийся тем, что подготавливают пористую среду, размещают подготовленную пористую среду в рентгенопрозрачном кернодержателе, создают горное давление в пористой среде, подают метан под давлением, равным пластовому давлению, создают и поддерживают постоянное пластовое давление в рекомбинаторе и в пористой среде, подают исходную газоконденсатную смесь в пористую среду при давлении, равном пластовому, путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси, моделируют процесс истощения пористой среды при выбранном шаге снижения давления, проводят прогрев рентгеновской трубки и сканирование пористой среды на каждом шаге снижения давления, регистрируют значение интенсивности рентгеновского излучения при выбранном давлении после каждого сканирования пористой среды, строят график изменения интенсивности рентгеновского сигнала, проходящего через пористую среду, от давления, откладывая по оси абсцисс значения давления Р (МПа) в процессе истощения пористой среды, а по оси ординат - значения интенсивности рентгеновского излучения I (отн. ед.), при этом процесс истощения пористой среды производят до получения экстремума на графике, по которому определяют значение давления начала конденсации Р (МПа).

Изобретение относится к газовой промышленности и предназначено для исследования газоконденсатных смесей в пористой среде, а именно для определения давления начала конденсации в пористой среде.

Известен способ определения величины динамического давления начала конденсации газоконденсатных смесей, отличающийся тем, что с целью повышения точности измерений давление начала конденсации определяют по изменению проницаемости пористой среды, через которую фильтруется исследуемая смесь при ступенчатом изменении давления (см. авт. свид. СССР №202825, МПК6 G01K 11/00, G01N 15/08, E21B 43/18, B01D 37/00, опубл. 28.09.1967).

Недостатками описанного способа является трудоемкость при определении величины давления начала конденсации и недостаточная точность полученных данных, вызванная необходимостью определения состава добываемой продукции.

Известен способ определения давления начала конденсации, включающий закачку газоконденсатной системы, приведенной к пластовым условиям в сосуд высокого давления с пористой средой, измерение изменения давления газа в сосуде, отличающийся тем, что одновременно используют второй сосуд высокого давления, с тем же объемом и той же самой пористой средой, закачиваемую в него при том же давлении пластовую газоконденсатную систему предварительно сепарируют, осуществляют одновременно с одинаковой скоростью в обоих сосудах снижение давления, а величину давления начала конденсации определяют по величине давления в сосуде с насыщенной пластовой газоконденсатной системой в момент изменения от нуля показаний дифманометра, подсоединенного к обоим сосудам (см. авт. свид. №1765376, МПК5 E21B 47/00, E21B 47/06, опубл. 30.09.1992).

Недостатком описанного способа является неточность определения давления начала конденсации, поскольку в качестве модели пласта используют два сообщающихся сосуда, не позволяющих создать одинаковую пористую среду в каждом из них, а также то, что при снижении давления путем увеличения объема системы с помощью двух плунжерных насосов появляются «мертвые объемы», не заполненные пористой средой, что вносит значительную погрешность в измерения.

Задачей изобретения является создание способа определения давления начала конденсации в пористой среде в условиях, приближенных к пластовым, позволяющего устранить недостатки аналога и прототипа.

Техническим результатом является повышение точности, а также снижение трудоемкости измерения давления начала конденсации газоконденсатных смесей в пористой среде.

Поставленная задача в способе определения давления начала конденсации в пористой среде, включающем подачу исходной газоконденсатной смеси в пористую среду, решается тем, что подготавливают пористую среду, размещают подготовленную пористую среду в рентгенопрозрачном кернодержателе, создают горное давление в пористой среде, подают метан под давлением, равным пластовому давлению, создают и поддерживают постоянное пластовое давление в рекомбинаторе и в пористой среде, подают исходную газоконденсатную смесь в пористую среду при давлении, равном пластовому, путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси, моделируют процесс истощения пористой среды при выбранном шаге снижения давления, проводят прогрев рентгеновской трубки и сканирование пористой среды на каждом шаге снижения давления, регистрируют значение интенсивности рентгеновского излучения при выбранном давлении после каждого сканирования пористой среды, строят график изменения интенсивности рентгеновского сигнала, проходящего через пористую среду, от давления следующим образом: по оси абсцисс откладывают значения давления Р (МПа) в процессе истощения пористой среды, по оси ординат - значения интенсивности рентгеновского излучения I (отн. ед.), производят процесс истощения пористой среды до получения экстремума на графике, по которому определяют значение давления начала конденсации Pн.к. (МПа).

Заявленное изобретение поясняется с помощью фиг., на которой показан график изменения интенсивности рентгеновского излучения I (отн. ед.), проходящего через пористую среду, от давления Р (МПа).

В качестве пояснения к заявленному способу приводим следующее.

В качестве пористой среды используют образцы керна либо насыпную пористую среду (просеянный песок, сажу и т.д.). Исследуемую пористую среду экстрагируют и высушивают в термошкафу при температуре 105°С до постоянной массы.

Для определения параметров рентгеновского излучения при исследованиях используют сканер рентгеновского излучения «Ратмир». Образец пористой среды помещают в термомаслобензостойкую манжету внутри рентгенопрозрачного кернодержателя, создают горное давление на образец пористой среды.

Создают горное давление в пористой среде, подают в нее метан под давлением, равным пластовому давлению, температуру в рекомбинаторе и в пористой среде поддерживают постоянной и одинаковой, равной пластовой, в ходе всего эксперимента.

Осуществляют насыщение пористой среды путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси в пористую среду при помощи пресса при давлении, равном пластовому, и постоянной температуре.

Производят моделирование процесса истощения пористой среды при выбранном шаге снижения давления в пористой среде. Шаг снижения давления выбирают в зависимости от того, с какой точностью необходимо определить давление начала конденсации в пористой среде Pн.к. (МПа). Темп снижения давления при выпуске газа устанавливают не выше 0,7 МПа/час. На каждом шаге снижения давления Р (МПа) проводят прогрев рентгеновской трубки и сканирование пористой среды.

Рентгенопрозрачный кернодержатель с пористой средой просвечивают коллимированным пучком рентгеновского излучения, с помощью детектора измеряют интенсивность прошедшего излучения, каретку с рентгеновским аппаратом и детектором смещают вдоль пористой среды, на каждом шаге смещения проводят измерение интенсивности излучения и усреднение сигнала детектора.

При сканировании ток и напряжение на трубки подбирают таким образом, чтобы максимальный сигнал находился в 2/3 рабочего диапазона детектора.

После каждого сканирования пористой среды регистрируют значения интенсивности рентгеновского излучения I (отн. ед.) при выбранном давлении Р (МПа) и строят график изменения интенсивности рентгеновского излучения I (отн. ед.), проходящего через пористую среду, от давления Р (МПа) (см. фиг.) путем нанесения на него полученных значений интенсивности рентгеновского излучения I (отн. ед.) и давления Р (МПа) следующим образом: по оси абсцисс откладывают значения давления в процессе истощения залежи Р, (МПа), по оси ординат значения интенсивности рентгеновского излучения I (отн. ед.).

Моделирование процесса истощения пористой среды производят до получения экстремума, т.е. точки перегиба, которая является давлением начала конденсации Pн.к. (МПа).

В процессе моделирования истощения пористой среды до давления начала конденсации Pн.к. (МПа) происходит уменьшение плотности газоконденсатной смеси, которая насыщает пористую среду, за счет снижения давления Р (МПа), и соответственно, интенсивность рентгеновского излучения I (отн. ед.), проходящего через пористую среду, увеличивается. По достижении давления начала конденсации Pн.к. (МПа) происходит выпадение конденсата и в пористой среде появляется жидкая фаза, а это ведет к увеличению плотности среды, что приводит к уменьшению интенсивности рентгеновского излучения I (отн. ед.), проходящего через пористую среду.

Повышение точности и уменьшение трудоемкости данного способа достигается за счет того, что отсутствует необходимость определять количественный состав выпускаемой продукции во время процесса истощения пористой среды, а рентгеновское сканирование пористой среды для определения давления начала конденсации может проводиться с любым выбранным шагом снижения давления. Также в представленном способе нет необходимости по созданию двух одинаковых пористых сред.

Пример.

Пример проведения эксперимента по определению давления начала конденсации в пористой среде Pн.к. (МПа) для природной углеводородной смеси с содержанием УВ C5+ на сухой газ 232 г/м3 с использованием заявленного способа.

В качестве пористой среды используют цилиндрические образцы керна терригенного коллектора месторождения Югид длиной 30 мм и диаметром 30 мм. Для эксперимента выбирают однородные по составу образцы породы без сколов и трещин.

Перед проведением эксперимента по определению давления начала конденсации в пористой среде Pн.к. (МПа) образцы пористой среды экстрагируют в аппарате Сокслета и высушивают в термошкафу при температуре 105°C до постоянной массы. В качестве растворителя при экстрагировании используют толуол.

Далее пористую среду помещают в термомаслобензостойкую манжету внутри рентгенопрозрачного кернодержателя и создают горное давление 40 МПа.

Проводят насыщение пористой среды путем прокачки объемов исходной углеводородной смеси при поддержании давления 35,0 МПа и температуры 30°C.

По окончании процесса насыщения проводят снижение давления в пористой среде при постоянной температуре 30°C. Выбранный шаг снижения давления составил 0,1 МПа/час.

На каждом шаге снижения давления проводят прогрев рентгеновской трубки и сканируют пористую среду: кернодержатель с пористой средой просвечивают коллимированным пучком рентгеновского излучения, с помощью детектора измеряют интенсивность прошедшего рентгеновского излучения, каретку с рентгеновским аппаратом и детектором смещают вдоль пористой среды, на каждом шаге смещения проводят измерение интенсивности излучения и усреднение сигнала детектора.

При сканировании ток и напряжение на трубки подбирают таким образом, чтобы максимальный сигнал находился в 2/3 рабочего диапазона детектора.

После каждого сканирования образца пористой среды получают значения интенсивности рентгеновского излучения I (отн. ед.) при выбранном давлении и строят график изменения интенсивности рентгеновского излучения, проходящего через образец, от давления (фиг.), путем нанесения на него полученных значений следующим образом: по оси абсцисс откладывают давление в процессе истощения залежи Р (МПа), а по оси ординат - интенсивность рентгеновского излучения I (отн. ед.).

В таблице представлены результаты сканирования пористой среды в процессе моделирования истощения пористой среды.

Процесс истощения пористой среды проводят до получения экстремума (точки перегиба) на графике изменения интенсивности рентгеновского излучения, прошедшего через пористую среду, от давления, по которому определяют давление начала конденсации Pн.к.=30,9 МПа.

Способ определения давления начала конденсации в пористой среде, включающий подачу исходной газоконденсатной смеси в пористую среду, отличающийся тем, что подготавливают пористую среду, размещают подготовленную пористую среду в рентгенопрозрачном кернодержателе, создают горное давление в пористой среде, подают метан под давлением, равным пластовому давлению, создают и поддерживают постоянное пластовое давление в рекомбинаторе и в пористой среде, подают исходную газоконденсатную смесь в пористую среду при давлении, равном пластовому, путем прокачки 2-3 поровых объемов исходной газоконденсатной смеси, моделируют процесс истощения пористой среды при выбранном шаге снижения давления, проводят прогрев рентгеновской трубки и сканирование пористой среды на каждом шаге снижения давления, регистрируют значение интенсивности рентгеновского излучения при выбранном давлении после каждого сканирования пористой среды, строят график изменения интенсивности рентгеновского сигнала, проходящего через пористую среду, от давления, откладывая по оси абсцисс значения давления Р (МПа) в процессе истощения пористой среды, а по оси ординат - значения интенсивности рентгеновского излучения I (отн. ед.), при этом процесс истощения пористой среды производят до получения экстремума на графике, по которому определяют значение давления начала конденсации Р (МПа).
СПОСОБ ОПРЕДЕЛЕНИЯ ДАВЛЕНИЯ НАЧАЛА КОНДЕНСАЦИИ В ПОРИСТОЙ СРЕДЕ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 164.
27.02.2014
№216.012.a6ea

Способ ликвидации подземного хранилища природного газа

Изобретение относится к газовой промышленности, в частности к способам ликвидации подземных хранилищ газа. Способ включает отбор активного объема газа и последующий отбор буферного объема газа. Буферный объем газа отбирают до полного его вытеснения углекислым газом или азотом, закачку которых...
Тип: Изобретение
Номер охранного документа: 0002508445
Дата охранного документа: 27.02.2014
10.05.2014
№216.012.c155

Способ утилизации газов выветривания

Изобретение относится к нефтегазовой промышленности. Изобретение касается способа утилизации газов выветривания, включающего сепарацию и компримирование, сначала газы выветривания сепарируют, после чего жидкую фазу направляют на стабилизацию или хранение, а газовую фазу - на компримирование до...
Тип: Изобретение
Номер охранного документа: 0002515242
Дата охранного документа: 10.05.2014
27.08.2014
№216.012.f0a0

Способ освоения нефтяных и газовых скважин

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности освоения нефтяных и газовых скважин и увеличение их продуктивности. В способе освоения нефтяных и газовых скважин, включающем обработку призабойной зоны скважины путем закачки в скважину...
Тип: Изобретение
Номер охранного документа: 0002527419
Дата охранного документа: 27.08.2014
27.12.2014
№216.013.152e

Способ изготовления аморфной ленты

Изобретение относится к области металлургии и может быть использовано при производстве аморфных металлических лент. На подложку в виде металлической ленты подают расплавленный металл, который под действием практически мгновенного охлаждения переходит в аморфное состояние. Металлическую ленту...
Тип: Изобретение
Номер охранного документа: 0002536846
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1710

Устройство для намотки аморфной ленты

Изобретение относится к области металлургии. Устройство намотки аморфной ленты содержит наматывающий барабан с цилиндрическим основанием с электромагнитами, равномерно распределенными по окружности и двумя боковыми дисками-ограничителями с обоих торцов основания. Соосно барабану установлен...
Тип: Изобретение
Номер охранного документа: 0002537332
Дата охранного документа: 10.01.2015
27.07.2015
№216.013.682e

Способ компостирования органической части пищевых отходов

Изобретение относится к сельскому хозяйству. Способ компостирования органической части пищевых отходов включает жидкофазную и твердофазную ферментацию с использованием культуры микроорганизмов, причем в качестве культуры микроорганизмов используют активный ил, который предварительно выращивают...
Тип: Изобретение
Номер охранного документа: 0002558223
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6989

Способ проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах. Технический результат изобретения...
Тип: Изобретение
Номер охранного документа: 0002558570
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c3d

Состав для обработки призабойной зоны пласта терригенных коллекторов

Изобретение относится к нефтегазовой промышленности. Технический результат - повышение эффективности очистки призабойной зоны пласта терригенных коллекторов. Состав для обработки призабойной зоны пласта содержит, мас.%: оксиэтилидендифосфоновую кислоту 12-15; альфа олефинсульфонат натрия 3-5;...
Тип: Изобретение
Номер охранного документа: 0002559267
Дата охранного документа: 10.08.2015
27.10.2015
№216.013.8a87

Катионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород. Технический результат - улучшение структурно-реологических показателей раствора - пластической вязкости и...
Тип: Изобретение
Номер охранного документа: 0002567066
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c84

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - улучшение структурно-реологических и фильтрационных свойств...
Тип: Изобретение
Номер охранного документа: 0002567579
Дата охранного документа: 10.11.2015
Показаны записи 21-30 из 88.
27.02.2014
№216.012.a6ea

Способ ликвидации подземного хранилища природного газа

Изобретение относится к газовой промышленности, в частности к способам ликвидации подземных хранилищ газа. Способ включает отбор активного объема газа и последующий отбор буферного объема газа. Буферный объем газа отбирают до полного его вытеснения углекислым газом или азотом, закачку которых...
Тип: Изобретение
Номер охранного документа: 0002508445
Дата охранного документа: 27.02.2014
10.05.2014
№216.012.c155

Способ утилизации газов выветривания

Изобретение относится к нефтегазовой промышленности. Изобретение касается способа утилизации газов выветривания, включающего сепарацию и компримирование, сначала газы выветривания сепарируют, после чего жидкую фазу направляют на стабилизацию или хранение, а газовую фазу - на компримирование до...
Тип: Изобретение
Номер охранного документа: 0002515242
Дата охранного документа: 10.05.2014
27.08.2014
№216.012.f0a0

Способ освоения нефтяных и газовых скважин

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - повышение эффективности освоения нефтяных и газовых скважин и увеличение их продуктивности. В способе освоения нефтяных и газовых скважин, включающем обработку призабойной зоны скважины путем закачки в скважину...
Тип: Изобретение
Номер охранного документа: 0002527419
Дата охранного документа: 27.08.2014
27.12.2014
№216.013.152e

Способ изготовления аморфной ленты

Изобретение относится к области металлургии и может быть использовано при производстве аморфных металлических лент. На подложку в виде металлической ленты подают расплавленный металл, который под действием практически мгновенного охлаждения переходит в аморфное состояние. Металлическую ленту...
Тип: Изобретение
Номер охранного документа: 0002536846
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1710

Устройство для намотки аморфной ленты

Изобретение относится к области металлургии. Устройство намотки аморфной ленты содержит наматывающий барабан с цилиндрическим основанием с электромагнитами, равномерно распределенными по окружности и двумя боковыми дисками-ограничителями с обоих торцов основания. Соосно барабану установлен...
Тип: Изобретение
Номер охранного документа: 0002537332
Дата охранного документа: 10.01.2015
27.07.2015
№216.013.682e

Способ компостирования органической части пищевых отходов

Изобретение относится к сельскому хозяйству. Способ компостирования органической части пищевых отходов включает жидкофазную и твердофазную ферментацию с использованием культуры микроорганизмов, причем в качестве культуры микроорганизмов используют активный ил, который предварительно выращивают...
Тип: Изобретение
Номер охранного документа: 0002558223
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6989

Способ проведения исследований газожидкостного потока

Изобретение относится к технике для исследования движения жидкостных потоков и газожидкостных потоков, например процессов добычи газа в нефтегазовой отрасли, связанной с изучением процессов движения газожидкостных потоков в вертикальных и отдельных устройствах. Технический результат изобретения...
Тип: Изобретение
Номер охранного документа: 0002558570
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c3d

Состав для обработки призабойной зоны пласта терригенных коллекторов

Изобретение относится к нефтегазовой промышленности. Технический результат - повышение эффективности очистки призабойной зоны пласта терригенных коллекторов. Состав для обработки призабойной зоны пласта содержит, мас.%: оксиэтилидендифосфоновую кислоту 12-15; альфа олефинсульфонат натрия 3-5;...
Тип: Изобретение
Номер охранного документа: 0002559267
Дата охранного документа: 10.08.2015
27.10.2015
№216.013.8a87

Катионный буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых глинистых пород. Технический результат - улучшение структурно-реологических показателей раствора - пластической вязкости и...
Тип: Изобретение
Номер охранного документа: 0002567066
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8c84

Буровой раствор

Изобретение относится к буровым растворам на водной основе и может найти применение при бурении нефтяных и газовых скважин, преимущественно при бурении неустойчивых набухающих пластичных глин и аргиллитов. Технический результат - улучшение структурно-реологических и фильтрационных свойств...
Тип: Изобретение
Номер охранного документа: 0002567579
Дата охранного документа: 10.11.2015
+ добавить свой РИД