×
10.04.2016
216.015.30c2

СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002580074
Дата охранного документа
10.04.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам цифровой обработки изображений. Техническим результатом является повышение помехоустойчивости сегментации, а также повышение степени автоматизации процесса анализа и классификации сегментов изображения. Для решения задач распознавания образов по результатам анализа растровых полутоновых изображений предложен способ, заключающийся в локальной обработке исходного изображения масочным оператором и вычислении градиента полученного изображения, градиент вычисляют у изображения G1, формируемого путем локальной обработки исходного изображения масочным оператором, определяющим «центры тяжести» гистограмм в «пустом» окне. 1 табл., 10 ил.
Основные результаты: Способ автоматической сегментации полутоновых сложнотекстурированных растровых изображений, заключающийся в том, что посредством обработки локальным масочным оператором исходного изображения получают новое изображение, вычисляют его градиентное изображение и посредством пороговой обработки получают сегментированное бинарное изображение, отличающийся тем, что локальная обработка исходного изображения масочным оператором состоит в вычислении «центров тяжести» гистограмм в «пустом» окне по формуле , где q - номер интервала разбиения диапазона яркостей пикселей в «пустом» окне, s - число интервалов разбиения диапазона яркостей пикселей в «пустом» окне, - q-й отсчет гистограммы в «пустом» окне с координатами ij, ∆ - ширина интервала разбиения диапазона яркостей пикселей в «пустом» окне.
Реферат Свернуть Развернуть

Изобретение относится к способам цифровой обработки изображений. Для решения задач распознавания образов по результатам анализа растровых полутоновых изображений необходимо решить задачу разделения исходного изображения на части (сегменты), различающиеся по своему семантическому содержанию. От качества сегментации зависит эффективность дальнейшего анализа и классификации изображений.

Известен способ сегментации изображения, называемый наращиванием областей (см., например, Якушенков Ю.Г. Техническое зрение роботов. - М.: Машиностроение, 1990, - с. 49-51; Путятин Е.П., Аверин С.И. Обработка изображений в робототехнике. - М.: Машиностроение, 1990, с. 18-25). Суть его заключается в том, что элементы изображения с одинаковыми или близкими уровнями яркости группируют, объединяя в однородные области. Для этого на исходном изображении ищут элементарные области, где пиксели объединяются в группы, если они обладают одинаковым уровнем яркости и являются соседями в смысле четырехсвязности. Затем элементарные области, имеющие общие границы, сливаются воедино согласно различным эвристическим правилам. Недостатком этого способа является необходимость подбора яркостных порогов в интерактивном режиме.

При проведении выращивания и слияний областей часто используется текстурная информация [Pat. US2009080773 (Al), IPC7 G06K 9/34. Image segmentation using dynamic color gradient threshold, texture, and multimodal-merging [Text] /Shaw M. [US]; Bhaskar R. [US]; Ugarriza L. G. [US]; Saber E. [US]; AmusoV. [US]]. Однако использование текстурной информации при выращивании ограничивается тем, что для анализа текстуры (обычно это вычисление различных признаков, описанных в математической статистике), как правило, уже требуется иметь область размером более одного пикселя, что при выращивании (добавление единственного пикселя к области) невозможно.

Выделение контуров объектов на полутоновых растровых изображениях можно осуществлять совместно с выделением самих объектов. Для этого обычно используют пороговые методы сегментации на основе среднего значения яркости пикселей, например [патент РФ №2325044 «Градиентный способ выделения контуров объектов на матрице полутонового растрового изображения»], где предложен градиентный способ выделения контуров объектов на матрице полутонового растрового изображения, заключающийся в том, что для всех пикселей растрового изображения вычисляют норму или квадрат нормы градиента изменения их яркости, затем на новой черно-белой монохромной матрице черным цветом на белом фоне выделяют все элементы, у которых значение нормы или квадрата нормы градиента больше порогового значения, а в качестве контуров объектов на монохромной матрице принимают связные конфигурации элементов черного цвета, для выбранного способа вычисления градиента экспериментально определяют коэффициент, затем рассчитывают пороговое значение квадрата нормы градиента как произведение данного коэффициента на сумму квадратов средних величин модулей изменения яркости соседних пикселей по строкам и столбцам, у которых значения превышают общие средние уровни ненулевых изменений, соответственно, по строкам и столбцам, а среди связных конфигураций элементов черного цвета на монохромной матрице сразу отбрасывают конфигурации, у которых число входящих элементов менее 5-7 элементов, для оставшихся конфигураций вычисляют среднюю степень соседства - частное от деления суммы по всем элементам конфигурации соседних с ним элементов на сумму элементов в конфигурации, причем те конфигурации, у которых средняя степень соседства менее 3, отбрасывают, а оставшиеся принимают в качестве искомых контуров объектов.

К недостаткам данного способа можно отнести слишком большое число эмпирически настраиваемых параметров, что не позволяет получить решающие правила, пригодные для изображений одного и того же класса, полученных при различных условиях или при различных уровнях помех. При нечетких сегментах такие параметры подобрать практически невозможно.

Близким к заявленному способу является способ сегментации [патент РФ №2148858 «Способ автоматической сегментации полутонового изображения по форме яркостной гистограммы»], который заключается в определении унимодального или бимодального типа исходной яркостной гистограммы в «пустой» маске и порогового уровня яркости. Этот пороговый уровень позволяет разделить бимодальную гистограмму на два унимодальных фрагмента, а также обеспечить обратный переход от фрагментов гистограммы к сегментам изображения. Яркостную гистограмму в «пустых» масках аппроксимируют полиномами, после чего строят кривую динамики центра гистограмм и определяют яркостные интервалы заданных значений яркости. Затем вычисляют вес области разделения для каждого интервала, идентифицируют яркостной интервал для области разделения с максимальным весом. При превышении максимального веса области разделения над нормативным весом, принимают решение о бимодальном типе исходной яркостной гистограммы. В качестве порогового уровня яркости для обеспечения операции порогового среза исходного изображения принимают глобальный минимум аппроксимирующего полинома на яркостном интервале с максимальным весом области разделения.

Недостатки данного способа заключаются в том, что гистограмма в «пустой» маске, центр которой лежит на границе сегмента, не всегда получается бимодальной. В этом случае пиксель, лежащий на границе сегмента, не идентифицируется как граница сегмента, и, наоборот, гистограмма в «пустой» маске может быть не унимодальной или многомодальной на границе сегмента, что также ведет к потере пикселя, лежащего на границе сегмента.

Наиболее близким к предлагаемому является способ сегментации [Pat. WO 2009143651 (A1), IPC7 G06T 5/00. Fast image segmentation using region merging with a k-nearest neighbor graph [Text] /Mantao X. [CN], Qiyong G. [CN], Hongzhi L. [CN], Jiwu Z. [CN]], принципиально состоящий из двух этапов: выращивания и последующего слияния сегментов. Выращивание областей в данном случае используется для выполнения начальной заведомо избыточной сегментации (initial oversegmentation), а слияние областей, основанное на методах теории графов, имеет своей целью достижение окончательного оптимального состояния сегментации. Определение центров кристаллизации в данном методе происходит в автоматическом режиме на основе градиентного изображения, полученного из исходного с помощью масочного оператора Кирша (Kirsch). Использование здесь градиентного изображения позволяет достаточно универсально решить проблему автоматического обнаружения центров кристаллизации, так как минимумам функции градиентного изображения будут соответствовать точки с максимально однородной окрестностью (потенциальные центры роста сегментов). Однако недостатком применения оператора Кирша в данной ситуации является его пространственная ограниченность (анализируется окрестность только 3×3 пикселей), тогда как при поиске центров кристаллизации было бы полезным исследовать окрестность точки на больших масштабах, чтобы учесть низкочастотные изменения функции яркости изображения и, таким образом, провести более точное последующее определение центров роста.

Технической задачей предлагаемого способа является повышение точности выделения границ сегментов полутоновых изображений (большее соответствие выделяемых сегментов субъективному восприятию изображения человеком) и как следствие, повышение помехоустойчивости сегментации, а также повышение степени автоматизации процесса анализа и классификации сегментов изображения.

Поставленная задача достигается тем, что в способе сегментации, заключающемся в локальной обработке исходного изображения масочным оператором и вычислении градиента полученного изображения, градиент вычисляют у изображения G1, формируемого путем локальной обработки исходного изображения масочным оператором, определяющим «центры тяжести» гистограмм в «пустом» окне по формуле

,

где q - номер интервала разбиения диапазона яркостей пикселей в «пустом» окне, s - число интервалов разбиения диапазона яркостей пикселей в «пустом» окне, - q-й отсчет гистограммы в «пустом» окне с координатами ij, ∆ - ширина интервала разбиения диапазона яркостей пикселей в «пустом» окне.

Сегменты изображения выделяют посредством пороговой обработки градиентного изображения.

На фиг.1 представлена структурная схема устройства, осуществляющего предлагаемый способ.

На фиг.2 представлена схема алгоритма, реализующего представленный способ.

На фиг.3 представлена схема алгоритма формирования изображения G1.

На фиг. 4 показано интерфейсное окно с исходным изображением F, на котором обозначено «пустое» окно с гистограммой яркостей пикселей фрагмента этого изображения, попавших в это окно.

На фиг.6 представлены гистограммы яркости пикселей в «пустом» окне, полученные при пересечении окном границы левого легкого в горизонтальном направлении.

На фиг. 6 представлены графики изменения «центра тяжести» гистограммы в «пустом» окне при его продвижении в горизонтальном направлении и пересечении границ сегментов «норма» - «патология» - «средостение».

На фиг. 7 представлены примеры сегментации изображения флюорограммы грудной клетки (а), реализованной посредством известного способа (б) и предлагаемого способа (в).

Способ осуществляется устройством, структурная схема которого показана на фиг. 1.

Устройство состоит из компьютера 1; блока памяти данных 2, состоящего из блока памяти 3, предназначенного для хранения файлов данных с полутоновыми изображениями (изображениями F) и подключенного к первому входу компьютера 1, и блока памяти 4, предназначенного для хранения файлов данных с сегментированными изображениями (бинарными изображениями G3) и подключенного к первому выходу компьютера 1; блока памяти 5, предназначенного для хранения программного обеспечения по сегментации полутоновых изображений, и подключенного ко второму входу и второму выходу компьютера 1; и видеомонитора 6, подключенного к третьему выходу компьютера 1.

Способ реализуется согласно схеме алгоритма, представленной на фиг.2. В блоке 7 осуществляется ввод в компьютер пикселей исходного растрового полутонового изображения F, размер которого по вертикали N1, а по горизонтали N2. В блоке 8 формируется «пустое» окно, размером М1хМ2. Блок 9 организует вычисление гистограмм фрагментов изображения, попадающих в «пустое» окно в процессе его продвижения по изображению F, и формирует из изображения F изображение G1, яркость пикселей которого определяется гистограммами фрагментов изображения F, попавших в «пустое» окно. Блок 10 организует вычисление градиента изображения G1 - формирует изображение G2. Окончательное выделение сегментов изображения осуществляется в блоке 11, в котором выполняется переход от полутонового изображения G2 к бинарному изображению G3. После анализа сегментированного изображения (блок 12) принимается решение о целесообразности изменения размеров окна (блок 13). Изменение размеров окна позволяет адаптировать процесс сегментации к выделяемым фрагментам изображения. Увеличение окна делает процесс сегментации менее чувствительным к изображениям малого размера (соизмеримым с размерами окна), но повышает помехоустойчивость сегментации.

На фиг.3 представлена схема алгоритма получения изображения (изображения G1). Блоки 14 и 15 осуществляют продвижение «пустого» окна по изображению F.

На фиг. 4 показано интерфейсное окно с исходным изображением F, на котором обозначено «пустое» окно, и гистограммой яркостей пикселей фрагмента этого изображения, попавших в это «пустое» окно.

Во вложенном цикле (блок 15) осуществляется вычисление гистограммы Hij в «пустом» окне (блок 16), формирование яркости пикселя изображения G1, соответствующего ij-й координате «пустого» окна осуществляется в блоке 17 по формуле

, (1)

где q - номер интервала разбиения диапазона яркостей пикселей исходного изображения в «пустом» окне, s - число интервалов разбиения диапазона яркостей пикселей в «пустом» окне, - q-й отсчет гистограммы в «пустом» окне с координатами ij, ∆ - ширина интервала разбиения диапазона яркостей пикселей в «пустом» окне.

Определение количества интервалов s на гистограмме осуществляем по формуле Стерджесса [Hyndman, R.J. (1995). The problem with Sturges' rule for constructing histograms Business, Issue: July, 1-2.]

, (2)

где - общее количество пикселей в «пустом» окне.

При этом ширина интервала гистограммы ∆ определяется согласно формуле

, (3)

где dmax - максимальная яркость пикселя в окне, dmin - минимальная яркость пикселя в окне.

Рекомендуемые числа интервалов гистограммы, которые получаются при использовании формулы Стерджесса, представлены в таблице 1.

Таблица 1 Рекомендуемые числа интервалов на гистограмме в зависимости от числа пикселей в «пустом» окне
Количество пикселей в окне Число интервалов
23 - 45 6
46 - 90 7
91 - 180 8
181 - 361 9
362 - 723 10
724 - 1447 11
1448 - 2885 12

В настоящее время формула (2) подвергается критике за то, что она явным образом использует биномиальное распределение для аппроксимации нормального распределения, что не всегда корректно. Считается, что эта формула позволяет строить удовлетворительные гистограммы при объеме выборки менее 200.

Существует целый ряд альтернативных формул, некоторые из которых вычисляют длину интервала, после чего определяется число требуемых классов, например формула Скотта (Scott, 1979)

, (3)

где ∆ - длина интервала гистограммы, σ - стандартное отклонение значений яркостей пикселей в окне,

или формула Фридмана Диакониса (Freedman and Diaconis, 1981)

, (4)

где ∆ - длина интервала, (IQ) - разница между верхним и нижним квартилем в окне.

Формулы (3) и (4) более обоснованы статистической теорией и считаются предпочтительнее формулы Стерджесса. Поэтому в блоке 16 предусмотрена возможность определения числа интервалов в гистограмме различными способами.

На фиг. 5 приведены девять гистограмм в «пустом» окне, полученных при пересечении «пустым» окном границы сегмента (контур левого легкого на изображении флюорограммы грудной клетки фиг. 7а), по которому можно наблюдать эволюцию «центров тяжести» в «пустом» окне при пересечении границы сегмента.

Графики на фиг. 6 иллюстрируют изменение величины «центра тяжести» гистограмм в окне (ряд 1) и градиента «центра тяжести» гистограмм (ряд 2) при пересечении окна изображения флюорограммы грудной клетки в горизонтальном направлении. Графики на фиг. 6а и фиг. 6б получены при различных размерах «пустого» окна. На фиг. 6а размер окна в два раза больше, чем на фиг. 6б. Эти графики иллюстрируют тот факт, что уменьшение размера «пустого» окна ведет к более четкому выделению границ малых сегментов и не оказывает влияние на четкость выделения больших сегментов, а также показывают, что снижение размерности окна приводит к увеличению зашумленности контуров границ выделяемых сегментов.

Анализ экспериментальных результатов по обработке тестовых сложнотекстурированных изображений посредством предложенного способа сегментации показал его преимущества относительно известных методов сегментации. На фиг. 7б показан результат сегментации тестового сложнотекстурированного изображения, представленного на фиг. 7а, в качестве которого выбрана флюорограмма грудной клетки у больного пневмонией, известным способом. Сегмент изображения флюорограммы, определяющий этот диагноз, обведен на тестовом изображении окружностью. В качестве известного способа сегментации использовался контурный детектор Кенни, построенный также на градиентной обработке предварительно фильтрованного изображения. Его алгоритм реализован в виде процедуры в пакете Matlab [Гонсалес, Р. Цифровая обработка изображений в среде Matlab /Р. Гонсалес, Р. Вудс, С. Эддинс. М.: Техносфера, 2006. 616 с.].

Экспертный анализ представленных на фиг. 7 изображений показывает более высокую помехозащищенность предлагаемого способа по сравнению с аналогом.

Способ автоматической сегментации полутоновых сложнотекстурированных растровых изображений, заключающийся в том, что посредством обработки локальным масочным оператором исходного изображения получают новое изображение, вычисляют его градиентное изображение и посредством пороговой обработки получают сегментированное бинарное изображение, отличающийся тем, что локальная обработка исходного изображения масочным оператором состоит в вычислении «центров тяжести» гистограмм в «пустом» окне по формуле , где q - номер интервала разбиения диапазона яркостей пикселей в «пустом» окне, s - число интервалов разбиения диапазона яркостей пикселей в «пустом» окне, - q-й отсчет гистограммы в «пустом» окне с координатами ij, ∆ - ширина интервала разбиения диапазона яркостей пикселей в «пустом» окне.
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
СПОСОБ АВТОМАТИЧЕСКОЙ СЕГМЕНТАЦИИ ПОЛУТОНОВЫХ СЛОЖНОСТРУКТУРИРОВАННЫХ РАСТРОВЫХ ИЗОБРАЖЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 10.
20.04.2013
№216.012.3584

Устройство для измерения тремора пальцев рук

Изобретение относится к медицинской технике и может быть использовано при биомеханических исследованиях, в спорте, в нейрофизиологических исследованиях для проведения ранней диагностики заболеваний различных функциональных систем человека, а также при оценке профессиональной пригодности....
Тип: Изобретение
Номер охранного документа: 0002479253
Дата охранного документа: 20.04.2013
20.01.2014
№216.012.96e5

Устройство для контроля анизотропии электрической проводимости биотканей

Изобретение относится к медицинской технике. Устройство для измерения импеданса биологических тканей содержит последовательно соединенные матрицу из N электродов, блок коммутации, инструментальный усилитель, блок детекторов, многоканальный АЦП, микроконтроллер и ЭВМ. В устройство введены первый...
Тип: Изобретение
Номер охранного документа: 0002504328
Дата охранного документа: 20.01.2014
10.04.2014
№216.012.b07e

Способ сегментации сложноструктурированных растровых полутоновых изображений на основе составных морфологических операторов

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является повышение точности выделения границ сложноструктурируемых изображений за счет формирования множества фильтрованных по направлению изображений из исходного полутонового изображения путем локальной...
Тип: Изобретение
Номер охранного документа: 0002510897
Дата охранного документа: 10.04.2014
10.01.2015
№216.013.18c7

Способ ранней диагностики сердечно-сосудистых заболеваний на основе многоканального спектрального анализа медленных волн кардиосигналов

Изобретение относится к медицине, а именно к неинвазивным способам качественно-количественного анализа функционального состояния сердечно-сосудистой системы. Осуществляют запись пульсового сигнала и электрокардиосигнала в течение 2-3 мин. Выделяют медленные волны из двух кардиосигналов,...
Тип: Изобретение
Номер охранного документа: 0002537771
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d56

Способ формирования двумерного изображения биосигнала и его анализа

Изобретение относится к средствам анализа изображения сигнала. Техническим результатом является повышение степени информативности данных анализа сигнала. В способе выбирают две подсистемы, в которых процессы наблюдают в виде синхронизированных квазипериодических сигналов x(t) и x(t),...
Тип: Изобретение
Номер охранного документа: 0002538938
Дата охранного документа: 10.01.2015
10.05.2015
№216.013.484c

Способ акупунктурной диагностики

Изобретение относится к области медицинской диагностики, а именно к способам диагностики, профилактики и лечения заболеваний, основанным на исследовании вольтамперных характеристик точек акупунктуры. Способ заключается в измерении и регистрации параметров биоактивных репрезентативных точек...
Тип: Изобретение
Номер охранного документа: 0002550015
Дата охранного документа: 10.05.2015
10.12.2015
№216.013.9633

Биотехническая система контроля биоимпеданса

Изобретение относится к медицинской технике. Биотехническая система контроля биоимпеданса состоит из ЭВМ и мобильного блока, содержащего активный и пассивный электроды и их токоподводы, электронный модуль, аккумуляторный блок питания и беспроводный интерфейс, подключенный к выходу электронного...
Тип: Изобретение
Номер охранного документа: 0002570071
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.c179

Автономный интеллектуальный измерительный модуль

Изобретение относится к области контрольно-измерительной техники. Технический результат заключается в повышении скорости обработки данных. Автономный интеллектуальный измерительный модуль содержит аналоговые датчики, аналоговый коммутатор, аналогово-цифровой преобразователь (АЦП),...
Тип: Изобретение
Номер охранного документа: 0002576595
Дата охранного документа: 10.03.2016
20.04.2016
№216.015.33bb

Способ и многофункциональное ассоциативное матричное устройство для обработки строковых данных и решения задач распознавания образов

Группа изобретений относится к области вычислительной техники, может быть использована в специализированных устройствах аппаратной поддержки типовых операций задач распознавания образов, в аппаратной поддержке в высокопроизводительных системах и устройствах параллельной обработки символьной...
Тип: Изобретение
Номер охранного документа: 0002582053
Дата охранного документа: 20.04.2016
19.01.2018
№218.015.ff59

Способ автоматической сегментации флюорограмм грудной клетки больных пневмонией

Изобретение относится к способам цифровой обработки медицинских изображений и может быть использовано для автоматической сегментации флюорограмм грудной клетки. Осуществляют вычисление гистограмм яркости изображения в выделенном окне. Для выделения на изображениях флюорограмм грудной клетки...
Тип: Изобретение
Номер охранного документа: 0002629629
Дата охранного документа: 30.08.2017
Показаны записи 1-10 из 18.
10.01.2015
№216.013.18c7

Способ ранней диагностики сердечно-сосудистых заболеваний на основе многоканального спектрального анализа медленных волн кардиосигналов

Изобретение относится к медицине, а именно к неинвазивным способам качественно-количественного анализа функционального состояния сердечно-сосудистой системы. Осуществляют запись пульсового сигнала и электрокардиосигнала в течение 2-3 мин. Выделяют медленные волны из двух кардиосигналов,...
Тип: Изобретение
Номер охранного документа: 0002537771
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1d56

Способ формирования двумерного изображения биосигнала и его анализа

Изобретение относится к средствам анализа изображения сигнала. Техническим результатом является повышение степени информативности данных анализа сигнала. В способе выбирают две подсистемы, в которых процессы наблюдают в виде синхронизированных квазипериодических сигналов x(t) и x(t),...
Тип: Изобретение
Номер охранного документа: 0002538938
Дата охранного документа: 10.01.2015
10.05.2015
№216.013.484c

Способ акупунктурной диагностики

Изобретение относится к области медицинской диагностики, а именно к способам диагностики, профилактики и лечения заболеваний, основанным на исследовании вольтамперных характеристик точек акупунктуры. Способ заключается в измерении и регистрации параметров биоактивных репрезентативных точек...
Тип: Изобретение
Номер охранного документа: 0002550015
Дата охранного документа: 10.05.2015
10.12.2015
№216.013.9633

Биотехническая система контроля биоимпеданса

Изобретение относится к медицинской технике. Биотехническая система контроля биоимпеданса состоит из ЭВМ и мобильного блока, содержащего активный и пассивный электроды и их токоподводы, электронный модуль, аккумуляторный блок питания и беспроводный интерфейс, подключенный к выходу электронного...
Тип: Изобретение
Номер охранного документа: 0002570071
Дата охранного документа: 10.12.2015
10.03.2016
№216.014.c179

Автономный интеллектуальный измерительный модуль

Изобретение относится к области контрольно-измерительной техники. Технический результат заключается в повышении скорости обработки данных. Автономный интеллектуальный измерительный модуль содержит аналоговые датчики, аналоговый коммутатор, аналогово-цифровой преобразователь (АЦП),...
Тип: Изобретение
Номер охранного документа: 0002576595
Дата охранного документа: 10.03.2016
20.04.2016
№216.015.33bb

Способ и многофункциональное ассоциативное матричное устройство для обработки строковых данных и решения задач распознавания образов

Группа изобретений относится к области вычислительной техники, может быть использована в специализированных устройствах аппаратной поддержки типовых операций задач распознавания образов, в аппаратной поддержке в высокопроизводительных системах и устройствах параллельной обработки символьной...
Тип: Изобретение
Номер охранного документа: 0002582053
Дата охранного документа: 20.04.2016
19.01.2018
№218.015.ff59

Способ автоматической сегментации флюорограмм грудной клетки больных пневмонией

Изобретение относится к способам цифровой обработки медицинских изображений и может быть использовано для автоматической сегментации флюорограмм грудной клетки. Осуществляют вычисление гистограмм яркости изображения в выделенном окне. Для выделения на изображениях флюорограмм грудной клетки...
Тип: Изобретение
Номер охранного документа: 0002629629
Дата охранного документа: 30.08.2017
10.05.2018
№218.016.3d76

Способ прогнозирования степени тяжести ишемического процесса сердца, головного мозга и нижних конечностей

Изобретение относится к области медицины и может быть использовано для диагностики и терапии в неврологии, кардиологии, сосудистой хирургии, экспертизе инвалидности, профессиональной пригодности. Способ заключается в определении таких информативных признаков S как критерий оценки центральной...
Тип: Изобретение
Номер охранного документа: 0002648178
Дата охранного документа: 22.03.2018
30.11.2018
№218.016.a241

Способ комплексной терапии при сочетанной ишемии центральной гемодинамической системы, нижних конечностей, сердца и головного мозга

Изобретение относится к медицине и может быть использовано для комплексной терапии при сочетанной ишемии центральной гемодинамической системы, нижних конечностей, сердца и головного мозга. Сущность изобретения состоит в том, что в способе комплексной терапии при сочетанной ишемии центральной...
Тип: Изобретение
Номер охранного документа: 0002673481
Дата охранного документа: 27.11.2018
13.04.2019
№219.017.0c48

Адаптивное устройство обнаружения и аналого-дискретного преобразования сигналов

Изобретение относится к области радиотехники и контрольно-измерительной техники и предназначено для обнаружения импульсных сигналов на фоне шумовых помех и аналого-дискретного преобразования (предобработки) этих сигналов, в частности для измерения текущих значений параметров выделенных...
Тип: Изобретение
Номер охранного документа: 0002684643
Дата охранного документа: 11.04.2019
+ добавить свой РИД