×
10.04.2016
216.015.2fc4

Результат интеллектуальной деятельности: СПОСОБ ДЕТЕКЦИИ АМИНОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии и касается способа определения амина в образце. Сущность способа заключается в контактировании образца, содержащего амин, с раствором соли, содержащей 2,2',2”,6,6',6”-гексаметокситритильный карбокатион, и последующем определении конъюгатов методами высокоэффективной жидкостной хроматографии и масс-спектрометрии. Способ пригоден как для летучих аминов малой массы, так и для полярных аминогликозидных соединений. Образующиеся производные аминов обладают поглощением в УФ-области и повышенной склонностью к ионизации, что облегчает их детекцию указанными выше методами. Использование способа позволяет с высокой точностью определить амины в образце. 2 з.п. ф-лы, 1 табл., 33 пр., 33 ил.

Область техники, к которой относится изобретение

Изобретение относится к области аналитической химии и касается способа детекции органических соединений, содержащих аминогруппу.

Уровень техники

Амины являются одним из важнейших классов органических соединений. Аминогруппа входит в состав многих природных соединений (белки, пептиды, аминокислоты, биогенные амины и нейромедиаторы, нуклеиновые кислоты, нуклеотиды, нуклеозиды, алкалоиды, антибиотики, токсины и другие вторичные метаболиты), лекарств, наркотических препаратов. Различные амины используются в качестве мономеров для поликонденсации, компонентов клеев и адгезивов, добавок к топливу, а также в производстве красителей и гербицидов. Токсичные ароматические амины являются загрязнителями окружающей среды.

Из-за распространенности и высокой биологической активности аминов методы их определения непрерывно совершенствуются.

Наиболее близкие способы детекции аминов рассмотрены в обзоре (Erim В.Н. Tr. Anal. Chem., 2013, 52, 239-247) в настоящее время используются почти исключительно инструментальные методы, основанные на применении высокоэффективной жидкостной хроматографии (ВЭЖХ), масс-спекрометрии с различными типами ионизации и комбинации ВЭЖХ/масс-спектрометрия

Однако анализ многих аминов методами ВЭЖХ и масс-спектрометрии затруднен. Низкомолекулярные амины летучи, поэтому их можно анализировать в вакууме в масс-спектрометрах лишь в виде солей. Метод усиливаемой матрицей лазерной ионизации (MALDI) непригоден для аминов малой массы из-за перекрывания с фоновыми сигналами матрицы. Полярные амины (аминосахара, аминогликозидные антибиотики) с трудом ионизируются в условиях масс-спектрометрии, и их детекция в смесях с другими веществами затруднена. Еще одним недостатком существующих методов является дороговизна оборудования и сложность анализа.

Увеличить чувствительность детекции в масс-спектрометрии трудно ионизирующихся соединений позволяет их модификация молекулами, содержащими постоянный заряд или легко ионизирующуюся группировку. Для дериватизации по аминогруппе пептидов с целью их дальнейшей детекции с помощью масс-спектрометрии использовали реакцию с активированными эфирами, содержащими заряженные группы - четвертичные фосфониевые соли, четвертичные аммониевый соли, тритильные соединения. Аминогруппы пептидов превращали с помощью O-метилизомочевины и ее производных в гуанидиновые, легко поддающиеся ионизации. Наконец, для дериватизации аминов в масс-спектрометрии использовали тетрафторборат трис(2,4,6-триметоксифенил)метилия; при реакции замещается одна из пара-метоксильных групп и амин превращается в постоянно заряженное тритильное производное.

Известна также реакция 2,2′,2″,6,6′,6″-гексаметокситритильного катиона с аминами с образованием производных акридина (Laursen B.W., Krebs F.C. Angew. Chem. Int. Ed., 2000, 39, 3432-3434; Laursen B.W., Krebs F.C. Chem. Eur. J., 2001, 7, 1773-1783; Laursen B.W. et al. Angew. Chem. Int. Ed., 2003, 42, 3162-3166). Однако ранее она не использовалась для дериватизации аминов в ВЭЖХ и масс-спектрометрии.

Предлагаемое изобретение решает задачу по созданию экспресс-метода анализа аминов для фармацевтической промышленности, сельхоз и пищевой индустрии. Поставленная задача решается за счет химической модификации анализируемых объектов, с последующей их детекцией масс-спектрометрическими методами.

Раскрытие изобретения

Способ детекции амина в образце включает в себя контактирование образца, содержащего амин, с раствором соли, содержащей 2,2′,2″,6,6′,6″-гексаметокситритильный карбокатион, и детекцию полученного акридинового производного в образце с помощью ВЭЖХ и/или масс-спектрометрии.

Амины, коммерчески доступные в виде гидрохлоридов, сульфатов и других солевых форм, предварительно растворяют в водном буферном растворе (pH=9.55).

Амины - органические соединения, являющиеся производными аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.

Образец - препарат, содержащий в своем составе амин.

Соли, содержащие карбокатион - вещества, состоящие из катиона 2,2′,2″,6,6′,6″-гексаметокситритила и аниона сильной кислоты.

В заявленном способе используется реакция амина с 2,2′,2″,6,6′,6″-гексаметокситритилиевой солью: тетрафторборатом, гексафторфосфатом, нитратом, перхлоратом, хлоридом, бромидом, которая была описана в статье (Laursen B.W., Krebs F.C. Chem. Eur. J., 2001, 7, 1773-1783) и ранее не использовалась для дериватизации аминов с целью их детекции. Первая стадия, приводящая к акридиновому производному, протекает легко:

Реакция осуществляется в органической или водно-органической среде при pH>7, эффективна, ортогональна по отношению к большинству функциональных групп. В реакцию способны вступать как алифатические, так и ароматические амины R-NH2.

В качестве модельных субстратов были взяты арилалкильные амины состава Ph(CH2)nNH2, где n=2,3,4. Процедура детекции амина весьма проста: к раствору масс-спектрометрической метки в ацетонитриле добавляют амин, затем спустя 10 минут анализируют методом MALDI реакционную смесь с помощью MALDI масс-спектрометрии.

Для того, чтобы показать возможности способа, нами были проведены реакции с рядом различных по структуре и природе аминов:

Как видно из таблицы 1 предлагаемый способ охватывает широкий круг аминов среди которых есть непосредственно лекарственные препараты, антибиотики, гормоны, пептиды, аминокислоты и другие биологически-активные вещества.

Также стоит отметить, что представленный способ имеет неоспоримые преимущества для определения веществ, не поглощающих в УФ области спектра и трудноионизируемых, что делает невозможным или очень сложным определение их с помощью ВЭЖХ и масс-спектрометрии.

Предлагаемый способ, включающий использование реакции гексаметокситритильного карбокатиона с аминами, характеризуется следующими техническими результатами, являющимися улучшениями в сравнении с существующими методами экспресс-детекции аминов.

1. Высокая чувствительность и предел детекции (порядка 3*1010 молекул) в ячейке мишени для ионизации методом MALDI.

2. Упрощен процесс пробоподготовки. Анализы могут проводить люди без специальных аналитических навыков, следуя несложной инструкции.

3. Уменьшено время анализа. Время реакции как правило не превышает 30 минут, время анализа занимает порядка 5 минут.

4. Дешевизна и доступность реагентов.

5. Возможность определения легколетучих, трудноионизируемых и непоглощающих в УФ-области аминосодержащих веществ.

Основным параметром, наглядно демонстрирующим возможности метода, является интенсивность сигнала конъюгата метка-амин в масс-спектре.

Осуществление изобретения

Изобретение иллюстрируют следующие примеры:

Для проведения реакции был приготовлен 0.5*10-2 М раствор гексафторфосфата 2,2′,2″,6,6′,6″-гексаметокситритила в ацетонитриле (раствор 1).

Пример 1

К 50 мкл раствора 1 метки добавляют 100 мкл ацетонитрила и 1 мг амина 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 1 MALDI-спектр в матрице CHCA)

Примеры 2

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 2. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 2 MALDI-спектр в матрице CHCA)

Пример 3

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 3. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 3 MALDI-спектр в матрице CHCA)

Пример 4

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 27. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 4 MALDI-спектр в матрице CHCA)

Пример 5

Смешивают по 10 мкл реакционных смесей из примеров 1, 2, 3, 4. Полученную реакционную смесь анализируют методом MALDI. (Фиг. 5 MALDI-спектр в матрице CHCA)

Пример 6

0.5 мг гидрохлорида амина 24 растворяют в 200 мкл карбонатного буфера (pH=9.55) и добавляют 50 мкл раствора 1. Реакционную смесь анализируют методом MALDI. (Фиг. 6 MALDI-спектр в матрице CHCA)

Пример 7

0.5 мг гидрохлорида амина 26 растворяют в 200 мкл карбонатного буфера (pH=9.55) и добавляют 50 мкл раствора 1. Реакционную смесь анализируют методом MALDI. (Фиг. 7 MALDI-спектр в матрице CHCA)

По 1 мг сульфатов аминогликозидных антибиотиков 28, 29, 30, 31 растворяют в 200 мкл буфера (pH=9.55)

Пример 8

190 мкл раствора антибиотика 28 смешивают со 100 мкл раствора 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI и ВЭЖХ. (Фиг. 8a MALDI-спектр в матрице CHCA, Фиг. 8б ВЭЖХ 2,2′,2″,6,6′,6″-гексаметокситритил гексафторфосфата, Фиг. 8в ВЭЖХ конъгата канамициа и 2,2′,2″,6,6′,6″-гексаметокситритила)

Пример 9

190 мкл раствора антибиотика 29 смешивают со 100 мкл раствора 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 9 MALDI-спектр в матрице CHCA)

Пример 10

190 мкл раствора антибиотика 30 смешивают со 100 мкл раствора 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 10 MALDI-спектр в матрице CHCA)

Пример 11

190 мкл раствора антибиотика 31 смешивают со 100 мкл раствора 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 11 MALDI-спектр в матрице CHCA)

Пример 12

Смешивают по 10 мкл растворов антибиотиков 28, 29, 30, 31 и добавляют к ним 50 мкл раствора 1. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 12 MALDI-спектр в матрице CHCA)

Пример 13

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 4. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 13 MALDI-спектр в матрице CHCA)

Пример 14

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 5. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 14 MALDI-спектр в матрице CHCA)

Пример 15

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 6. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 15 MALDI-спектр в матрице CHCA)

Пример 16

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 7. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 16 MALDI-спектр в матрице CHCA)

Пример 17

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 8. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 17 MALDI-спектр в матрице CHCA)

Пример 18

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 9. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 18 MALDI-спектр в матрице CHCA)

Пример 19

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 10. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 19 MALDI-спектр в матрице CHCA)

Пример 20

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 11. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 20 MALDI-спектр в матрице CHCA)

Пример 21

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 12. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 21 MALDI-спектр в матрице CHCA)

Пример 22

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 13. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 22 MALDI-спектр в матрице CHCA)

Пример 23

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 14. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDL (Фиг. 23 MALDI-спектр в матрице CHCA)

Пример 24

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 15. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 24 MALDI-спектр в матрице CHCA)

Пример 25

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 16. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 25 MALDI-спектр в матрице CHCA)

Пример 26

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 17. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 26 MALDI-спектр в матрице CHCA)

Пример 27

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 18. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 27 MALDI-спектр в матрице CHCA)

Пример 28

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 19. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 28 MALDI-спектр в матрице CHCA)

Пример 29

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 20. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 29 MALDI-спектр в матрице CHCA)

Пример 30

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 21. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 30 MALDI-спектр в матрице CHCA)

Пример 31

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 22. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 31 MALDI-спектр в матрице CHCA)

Пример 32

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 23. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 32 MALDI-спектр в матрице CHCA)

Пример 33

К 50 мкл раствора 1 добавляют 100 мкл ацетонитрила и 1 мг амина 25. Выдерживают 30 минут. Реакционную смесь анализируют методом MALDI. (Фиг. 33 MALDI-спектр в матрице CHCA)

Все реакции проводят при комнатной температуре, без использования инертной атмосферы. Масс-спектрометрическому анализу подвергались непосредственно реакционные смеси без предварительной обработки. В процессе проведения масс-спектрометрического анализа варьировалась матрицы (CHCA, 2,4,6-THAP и sinapic acid) и интенсивность лазера.

Краткое описание чертежей и фигур

Данный способ может быть проиллюстрирован следующими примерами:


СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
СПОСОБ ДЕТЕКЦИИ АМИНОВ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 118.
25.01.2020
№220.017.f9bc

Рекомбинантная плазмидная днк ppiczαa/bche-14, содержащая ген модифицированной бутирилхолинэстеразы человека, предназначенная для экспрессии гена бутирилхолинэстеразы в метилотрофных дрожжах pichia pastoris для терапии отравлений фосфорорганическими токсинами

Изобретение относится к биотехнологии, в частности к получению рекомбинантной бутирилхолинэстеразы человека (БуХЭ). Предложена рекомбинантная плазмидная ДНК pPicZαA/BChE-14, обеспечивающая продукцию модифицированной бутирилхолинэстеразы человека rhBChE-14 и состоящая из нуклеотидной...
Тип: Изобретение
Номер охранного документа: 0002711939
Дата охранного документа: 23.01.2020
17.02.2020
№220.018.03a3

Способ получения цитотоксических т-лимфоцитов, экспрессирующих химерные рецепторы

Настоящее изобретение относится к биотехнологии. Предложен способ получения цитотоксических Т-лимфоцитов, экспрессирующих химерный рецептор. Согласно представленному способу для трансдукции Т-лимфоцитов используют рекомбинантные лентивирусные частицы, псевдотипированные поверхностными...
Тип: Изобретение
Номер охранного документа: 0002714380
Дата охранного документа: 14.02.2020
19.03.2020
№220.018.0d57

Рекомбинантная плазмидная днк, кодирующая гибридный белок l-hep, штамм escherichia coli продуцент указанного белка и способ получения рекомбинантного белка

Изобретение относится к области биотехнологии, в частности к генной инженерии и в частности к рекомбинантному белку L-HEP-HG6-CBD, рекомбинантному белку, который используется для получения рекомбинантного белка L-HEP-HG6-CBD, рекомбинантной плазмидной ДНК pET32b-L-HEP-HG6-CBD для экспрессии...
Тип: Изобретение
Номер охранного документа: 0002716975
Дата охранного документа: 17.03.2020
16.05.2020
№220.018.1d85

Способ получения модельной иммортализованной линии клеток, содержащей реконструированный в-клеточный рецептор неходжкинских лимфом человека

Изобретение относится к биотехнологии, а именно к способу получения модельной иммортализованной линии клеток, содержащей поверхностно-экспонированную трансмембранно-заякоренную форму В-клеточного рецептора (BCR) патологических лимфоцитов неходжкинских лимфом (НХЛ) человека в формате...
Тип: Изобретение
Номер охранного документа: 0002720912
Дата охранного документа: 14.05.2020
20.05.2020
№220.018.1e16

Применение рекомбинантного аналога водорастворимого домена белка lynx1 для торможения роста клеток карцином

Изобретение относится к области биотехнологии, конкретно к применению рекомбинантного водорастворимого домена Lynx1 с SEQ ID NO:1 для торможения роста карцином, и может быть использовано в медицине. Применение водорастворимого домена Lynx1 в концентрациях от 10 нМ до 10 мкМ позволяет добиться...
Тип: Изобретение
Номер охранного документа: 0002721129
Дата охранного документа: 18.05.2020
21.05.2020
№220.018.1f45

Пептид никомицин из морского кольчатого червя nicomache minor, обладающий антимикробным и противоопухолевым действием.

Изобретение относится к области биотехнологии и может быть использовано в медицине и ветеринарии. Биологически активный пептид никомицин имеет аминокислотную последовательность SEQ ID NO 1. Применение изобретения позволяет расширить ассортимент пептидов, обладающих высокой антимикробной...
Тип: Изобретение
Номер охранного документа: 0002721273
Дата охранного документа: 18.05.2020
04.06.2020
№220.018.23e6

Биосенсор на основе клеток staphylococcus aureus, стабильно продуцирующих зеленый флуоресцентный белок, для проведения ультравысокопроизводительного скрининга

Изобретение относится к биотехнологии. Предложен штамм-продуцент на основе штамма Staphylococcus aureus NCTC 8325, трансформированного экспрессионной векторной плазмидой pALC1420, содержащей нуклеотидные последовательности конститутивного промотера sar1, гена зеленого флуоресцентного белка GFP,...
Тип: Изобретение
Номер охранного документа: 0002722627
Дата охранного документа: 02.06.2020
04.06.2020
№220.018.240d

Способ получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты

Изобретение относится к области органического синтеза, а именно к способу получения сложного эфира 4-формил-6,7-дигидрокси-бензо[b]тиофен-3-карбоновой кислоты структурной формулы
Тип: Изобретение
Номер охранного документа: 0002722595
Дата охранного документа: 02.06.2020
09.06.2020
№220.018.258d

Штамм метилотрофных дрожжей pichia pastoris yst-ppic9pgapzalpha-short_htfng, продуцирующий рекомбинантный человеческий трансферрин, содержащий аминокислотные замены n413d и n611d

Изобретение относится к биотехнологии, а именно к получению модифицированного рекомбинантного трансферрина человека, содержащего аминокислотные замены N413D и N611D (ТФР). Изобретение может быть использовано для получения бессывороточных питательных сред для культивирования клеток...
Тип: Изобретение
Номер охранного документа: 0002723084
Дата охранного документа: 08.06.2020
27.06.2020
№220.018.2b85

Способ конъюгации константного фрагмента тяжелой цепи антитела человека и пептоидного аналога аутоантигена mog35-55 для терапии рассеянного склероза

Изобретение относится к биотехнологии, а именно к способу конъюгации рекомбинантного константного фрагмента тяжелой цепи иммуноглобулина человека (Fc) и пептоидного аналога аутоантигена MOG35-55 (AMogP3). Осуществляют химическую конъюгацию Fc с бифункциональным кросс-сшивающим линкером...
Тип: Изобретение
Номер охранного документа: 0002724714
Дата охранного документа: 25.06.2020
Показаны записи 71-72 из 72.
01.11.2019
№219.017.dd50

Штамм emericellopsis alkalina bilanenko & georgieva - продуцент антибиотиков - пептаиболов с антигрибной и антибактериальной активностью

Изобретение относится к биотехнологии. Штамм Emericellopsis alkalina депонирован во Всероссийской Коллекции Промышленных Микроорганизмов под регистрационным номером ВКПМ F-1428. Штамм Emericellopsis alkalina ВКПМ F-1428 обладает способностью продуцировать пептаиболы, обладающие антигрибной...
Тип: Изобретение
Номер охранного документа: 0002704421
Дата охранного документа: 28.10.2019
27.12.2019
№219.017.f3b7

Способ получения противогрибкового антибиотика эмерициллипсина а

Изобретение относится к способу получения нового пептидного противогрибкового антибиотика эмерициллипсина А, продуцируемого штаммом F -1428, с противогрибковой активностью в отношении 1402м, 497м 2015, а также 988м 2015 и 1133м 2011, обладающих природной резистентностью ко всем применяемым...
Тип: Изобретение
Номер охранного документа: 0002710377
Дата охранного документа: 26.12.2019
+ добавить свой РИД