×
10.04.2016
216.015.2faf

Результат интеллектуальной деятельности: СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Способ инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения может использоваться в области физики взрыва, методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ). Способ включает формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, исходящий от источника ЛИ импульс при помощи коллиматора, разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ. Диаметры ⌀ сформированных коллиматором лучей ЛИ и расстояние x между ними связаны с минимальной энергией Q светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем t до возбуждения детонации ВВ математической зависимостью t=f(Q, x, ⌀). Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. Изобретение обеспечивает минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации. 2 з.п. ф-лы, 1 ил., 2 табл.

Предлагаемое изобретение относится к области методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ) и может быть использовано для инициирования светочувствительных ВВ лазерным излучением.

Из предшествующего уровня техники известен способ неконтактного инициирования ВВ (патент РФ №2387949, МПК F42C 13/02, опубл. 27.04.2010 г.), согласно которому осуществляют формирование светового импульса лазерного излучения (ЛИ) в виде двух световых пучков, подачу сформированного импульса ЛИ на дистанционно удаленное инициируемое светочувствительное ВВ, корректировка направленности световых пучков с учетом скорости перемещения боеприпаса, снаряженного ВВ, и скорости перемещения цели, что позволяет произвести точный подрыв ВВ в заданный момент времени и в прогнозируемой точке пространства.

В качестве прототипа заявляемого способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения известен способ (патент РФ №2107256, МПК F42D 3/04, опубл. 20.03.1998 г.), согласно которому формируют импульс светового лазерного излучения (ЛИ), транслируемого по каналу в виде оптического волокна от выхода лазера к заряду ВВ для возбуждения детонации подрываемого заряда, при этом мощность лазерного импульса увеличивают при помощи подключаемых промежуточных лазеров с пиротехнической накачкой.

К недостаткам известных способов относится отсутствие условий для одновременного уменьшения времени до возбуждения детонации и снижения уровня энергии возбуждения детонации.

Задачей авторов изобретения является разработка эффективного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, обеспечивающего минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа по сравнению с прототипом, заключается в обеспечении минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, включающего формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, согласно предлагаемому способу исходящий от источника поток ЛИ разделяют на отельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора, при этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Предлагаемый способ поясняется следующим образом. Инициирование образца светочувствительного ВВ осуществляется путем пропускания потока ЛИ через перфорированную диафрагму с регулярно расположенными отверстиями (каналами), в которой происходит деление потока на составляющие лучи, независимо выходящие каждый из соответствующего канала.

Первоначально готовят элемент из светочувствительного ВВ из группы нитросодержащего соединения и размещают его в устройстве для испытаний зарядов ВВ на расчетном расстоянии и навстречу направлению распространения светового импульса ЛИ. Затем формируют импульс ЛИ, который подают сначала на коллиматор, выполненный в виде пластины с, по меньшей мере, 4-мя отверстиями, за счет чего осуществляют разделение потока ЛИ на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ.

При этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀).

Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. В качестве коллиматора в предлагаемом способе используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

При пропускании через коллиматор сформированного потока ЛИ обеспечивается снижение энергии возбуждения и одновременно оптимально минимизируем время до возбуждения детонации.

Под воздействием ЛИ на ВВ в облученной области образуется макроочаг самоподдерживающейся реакции, распространяющейся с дозвуковой скоростью. Если энергия, выделяющаяся при распространении макроочага, обеспечивает разгон процесса до сверхзвуковой скорости, то формируется детонационный режим. Если подведенной энергии недостаточно, чтобы обеспечить энерговыделение из макроочага, необходимое для разгона процесса до сверхзвуковой скорости, то под действием разгрузки он затухнет. Если имеется два таких макроочага, то в области их взаимодействия формируется реагирующая зона, которая в направлении инициирования распространяется с большей скоростью, чем каждый из очагов (как результирующая из векторного сложения скоростей границ макроочагов в предположении сферических фронтов).

В условиях не затухающих очагов:

- если скорость распространения очагов увеличивается, то в зоне взаимодействия распространение будет идти с большим ускорением, чем в макроочагах;

- если скорость распространения очагов постоянна, то в этой зоне распространение будет идти с ускорением.

В условиях затухающих очагов, если градиент скорости распространения каждого из очагов не слишком велик, то эта зона в области их взаимодействия также будет распространяться с ускорением.

Чем ближе расположены макроочаги, тем короче ускоряющий импульс от зоны их взаимодействия, но тем меньше градиент скорости при их затухании.

Выявленная экспериментально взаимосвязь указанных параметров позволяет оптимизировать процесс инициирования и подобрать соответствующие условия его эффективной реализации.

Таким образом:

- если энергии ЛИ, подведенной к каждому макроочагу, достаточно для установления в нем ускоряющегося сверхзвукового процесса, выходящего в последующем в детонационный режим, то создание двух и более очагов позволит добиться уменьшения времени до возбуждения детонации;

- если энергии ЛИ, подведенной к каждому макроочагу, недостаточно, то использование эффекта увеличения скорости распространения самоподдерживающегося процесса в зоне взаимодействия двух и более макроочагов позволяет при определенном соотношении энергии ЛИ, возбуждающего исходные макроочаги, и расстояния между ними сформировать в этой зоне ускоряющийся сверхзвуковой процесс, выходящий в последующем в детонационный режим. То есть при подводе ЛИ по двум и более каналам можно возбуждать в инициируемом элементе детонацию при энергии ЛИ, меньшей, чем при подвое по одному каналу.

- при оптимизации соотношения энергии ЛИ и расстояния между каналами подвода ЛИ можно добиться минимальной энергии, возбуждающей детонацию в инициируемом элементе, и минимального времени до ее возбуждения.

В предлагаемом способе инициирование светочувствительного взрывчатого вещества импульсом лазерного излучения осуществляется путем последовательного формирования импульса лазерного излучения (ЛИ) с последующей подачей сформированного импульса ЛИ на инициируемое светочувствительное ВВ, при этом исходящий от источника поток ЛИ разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора. Диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Результаты экспериментальных исследований по установлению оптимальных условий, необходимых для достижения заявленного технического результата, приведены в таблицах 1, 2.

В случае реализации способа прототипа, когда потоки ЛИ, подаваемые от заданного числа промежуточных лазеров с пиротехнической накачкой, пропускаются через независимые каналы оптических волокон, увеличение уровня потребляемой для возбуждения детонации энергии ЛИ достигается сложным как в технологическом, так и в конструкционном плане путем.

В случае инициирования ВВ традиционным методом фокусировки ЛИ на меньшую площадь (пятно) обеспечивается большая плотность энергии, благодаря чему достигается надежное инициирование при минимальной энергии излучения, пропорциональной отношению облучаемых поверхностей. Однако экономический эффект ограничен возможностями фокусирующей системы.

Таким образом, при использовании предлагаемого способа инициирования светочувствительного взрывчатого вещества импульсом ЛИ, прошедшего через диафрагму с регулярной перфорацией, обеспечивается возможность формирования минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на светочувствительном ВВ, для чего был выбран состав, представляющий собой смесь 93% масс., бензотрифураксана (БТФ) и 7% масс. Al, σ=0.95 г/см3; из которого был изготовлен заряд п. 1 (фиг. 1, а) диаметром 5 мм, высота заряда 10 мм. Инициирование заряда проводилось лазерным лучом через алюминиевый коллиматор п. 2 (фиг. 1), с помощью которого осуществлялось разделение потока ЛИ на отдельные, по крайней мере, 4 луча. Диаметр этих лучей превышает критический диаметр детонации светочувствительного ВВ. Сформированные коллиматором 4 луча ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ п. 3 и симметрично относительно геометрического центра коллиматора.

Были измерены энергии потока ЛИ, прошедшего через коллиматор п. 2 с отверстием диаметром 1 мм и расстоянием между ними 1 мм.

Эти параметры определены по математической формуле

Q=F (t, x, ⌀) (1)

и приведены в таблицах 1, 2.

Пример 2. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора кварцевого оптоволокна диаметром 1 мм (фиг. 1, б).

Пример 3. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора полимерного оптоволокна диаметром 1 мм.

Результаты приведены в таблице 1 (где представлены данные измерений энергии ЛИ от луча ⌀5 мм, передаваемой через коллиматор).

Прошедшая через коллиматор энергия ~1/25 входящей энергии, т.е пропорциональна отношению площадей областей, на которые воздействует ЛИ. Причина снижения выходной энергии через оптоволокно по сравнению с диафрагмой может быть связана с потерями на входных и выходных границах. Погрешность определения времени задержки детонации ±0,1 мкс.

В таблице 2 приведены данные о временах задержки детонации при инициировании через коллиматор.

Как это показали примеры, при реализации предлагаемого способа обеспечивается упрощение, возможность получения минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.


СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 471-480 из 663.
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c7c

Термоядерный реактор

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических...
Тип: Изобретение
Номер охранного документа: 0002640407
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.3f3d

Способ управления объектами путем скрытого идентифицирующего подобия

Изобретение относится к области идентификации технических средств путем использования их уникальных индивидуальных параметров. Технический результат заключается в обеспечении достоверного управления техническими объектами и формирования уникального идентифицирующего признака, присущего только...
Тип: Изобретение
Номер охранного документа: 0002648623
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.442c

Модуль бланкета гибридного термоядерного реактора

Изобретение относится к области термоядерной техники, в частности к бланкетам гибридных термоядерных реакторов. Модуль бланкета гибридного термоядерного реактора с жидкометаллическим теплоносителем содержит тепловыделяющие сборки с тепловыделяющими элементами. Топливо тепловыделяющих элементов...
Тип: Изобретение
Номер охранного документа: 0002649854
Дата охранного документа: 05.04.2018
29.05.2018
№218.016.5623

Система управления электронной плотностью плазмы на установках типа токамак

Изобретение относится к средствам проведения исследований в области управляемого термоядерного синтеза на установках типа токамак. Система управления электронной плотностью плазмы состоит из СВЧ интерферометра, с опорным каналом и основным каналом, проходящим через камеру токамака, на одном...
Тип: Изобретение
Номер охранного документа: 0002654518
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5644

Бесчехловая регулирующая тепловыделяющая сборка жидкометаллического ядерного реактора

Изобретение относится к области ядерной техники и может быть применено в бесчехловых регулирующих тепловыделяющих сборках жидкометаллического ядерного реактора. Бесчехловая тепловыделяющая сборка жидкометаллического ядерного реактора содержит тепловыделяющие элементы, установленные в...
Тип: Изобретение
Номер охранного документа: 0002654530
Дата охранного документа: 21.05.2018
Показаны записи 471-480 из 487.
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1c7c

Термоядерный реактор

Изобретение относится к термоядерной технике и используется при создании энергетических термоядерных установок типа токамак. Термоядерный реактор содержит вакуумный корпус и соединенные с ним посредством гибких опор модули бланкета. Гибкие опоры дополнительно выполняют функции электрических...
Тип: Изобретение
Номер охранного документа: 0002640407
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1db9

Способ уничтожения конфиденциальной информации, хранимой в микросхемах памяти электронных приборов

Изобретение относится к вычислительной технике. Технический результат заключается в уничтожении конфиденциальной информации, хранимой в микросхемах памяти электронных приборов с целью ее защиты от несанкционированного доступа. Способ уничтожения конфиденциальной информации, хранимой в...
Тип: Изобретение
Номер охранного документа: 0002640725
Дата охранного документа: 11.01.2018
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.342b

Способ иммобилизации жидких высокосолевых радиоактивных отходов

Изобретение относится к области ядерной энергетики, в частности к обращению с жидкими радиоактивными отходами (ЖРО) с целью их последующего длительного хранения и/или захоронения. Способ иммобилизации ЖРО в фосфатном компаунде включает регулирование уровня рН отходов, введение в полученный...
Тип: Изобретение
Номер охранного документа: 0002645737
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3671

Материал датчика для эпр дозиметрии ионизирующих излучений

Изобретение относится к области биосовместимых эпр датчиков дозиметра накопленной дозы ионизирующих излучений (ИИ). Материал датчика для эпр дозиметрии ионизирующих излучений на основе зубной эмали животного, отличающийся тем, что содержит пробу эмали зуба свиньи и дополнительно связующее и...
Тип: Изобретение
Номер охранного документа: 0002646549
Дата охранного документа: 05.03.2018
18.05.2019
№219.017.5728

Смесевое взрывчатое вещество

Изобретение относится к взрывчатым веществам (ВВ). Предложено смесевое ВВ для сварки взрывом, содержащее порошкообразный ТЭН или октоген, или гексоген (30-70 об.%) и наполнитель в виде бикарбоната натрия (остальное). Изобретение обеспечивает качественную сварку взрывом тонколистовых изделий или...
Тип: Изобретение
Номер охранного документа: 0002384551
Дата охранного документа: 20.03.2010
18.05.2019
№219.017.5732

Взрывное устройство для динамического нагружения

Изобретение относится к исследованиям поведения веществ при динамическом воздействии на них и может быть использовано в любой области техники. Взрывное устройство для динамического нагружения содержит основной заряд взрывчатого вещества, который выполнен многослойным, ударник и узел...
Тип: Изобретение
Номер охранного документа: 0002383880
Дата охранного документа: 10.03.2010
18.05.2019
№219.017.5907

Смесевое взрывчатое вещество и способ его изготовления

Изобретение относится к области разработки смесевых взрывчатых веществ (ВВ), а именно мощных бризантных ВВ с повышенными удельными характеристиками кумулятивных зарядов различного назначения, например используемых в газонефтедобыче. Предложенный состав смесевого высокобризантного ВВ включает...
Тип: Изобретение
Номер охранного документа: 0002417971
Дата охранного документа: 10.05.2011
29.05.2019
№219.017.65fd

Взрывной пьезогенератор

Пьезогенератор предназначен для использования в сильноточной импульсной технике в качестве исполнительного механизма в системах однократного действия. Пьезогенератор содержит устройство инициирования, генератор ударной волны в виде монолитного тела с зарядом в виде слоя взрывчатого вещества и...
Тип: Изобретение
Номер охранного документа: 0002313891
Дата охранного документа: 27.12.2007
+ добавить свой РИД