×
10.04.2016
216.015.2faf

Результат интеллектуальной деятельности: СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Способ инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения может использоваться в области физики взрыва, методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ). Способ включает формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, исходящий от источника ЛИ импульс при помощи коллиматора, разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ. Диаметры ⌀ сформированных коллиматором лучей ЛИ и расстояние x между ними связаны с минимальной энергией Q светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем t до возбуждения детонации ВВ математической зависимостью t=f(Q, x, ⌀). Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. Изобретение обеспечивает минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации. 2 з.п. ф-лы, 1 ил., 2 табл.

Предлагаемое изобретение относится к области методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ) и может быть использовано для инициирования светочувствительных ВВ лазерным излучением.

Из предшествующего уровня техники известен способ неконтактного инициирования ВВ (патент РФ №2387949, МПК F42C 13/02, опубл. 27.04.2010 г.), согласно которому осуществляют формирование светового импульса лазерного излучения (ЛИ) в виде двух световых пучков, подачу сформированного импульса ЛИ на дистанционно удаленное инициируемое светочувствительное ВВ, корректировка направленности световых пучков с учетом скорости перемещения боеприпаса, снаряженного ВВ, и скорости перемещения цели, что позволяет произвести точный подрыв ВВ в заданный момент времени и в прогнозируемой точке пространства.

В качестве прототипа заявляемого способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения известен способ (патент РФ №2107256, МПК F42D 3/04, опубл. 20.03.1998 г.), согласно которому формируют импульс светового лазерного излучения (ЛИ), транслируемого по каналу в виде оптического волокна от выхода лазера к заряду ВВ для возбуждения детонации подрываемого заряда, при этом мощность лазерного импульса увеличивают при помощи подключаемых промежуточных лазеров с пиротехнической накачкой.

К недостаткам известных способов относится отсутствие условий для одновременного уменьшения времени до возбуждения детонации и снижения уровня энергии возбуждения детонации.

Задачей авторов изобретения является разработка эффективного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, обеспечивающего минимальный уровень энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа по сравнению с прототипом, заключается в обеспечении минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения, включающего формирование светового импульса лазерного излучения (ЛИ), подачу сформированного импульса ЛИ на инициируемое светочувствительное ВВ, согласно предлагаемому способу исходящий от источника поток ЛИ разделяют на отельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора, при этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в способе в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Предлагаемый способ поясняется следующим образом. Инициирование образца светочувствительного ВВ осуществляется путем пропускания потока ЛИ через перфорированную диафрагму с регулярно расположенными отверстиями (каналами), в которой происходит деление потока на составляющие лучи, независимо выходящие каждый из соответствующего канала.

Первоначально готовят элемент из светочувствительного ВВ из группы нитросодержащего соединения и размещают его в устройстве для испытаний зарядов ВВ на расчетном расстоянии и навстречу направлению распространения светового импульса ЛИ. Затем формируют импульс ЛИ, который подают сначала на коллиматор, выполненный в виде пластины с, по меньшей мере, 4-мя отверстиями, за счет чего осуществляют разделение потока ЛИ на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ.

При этом диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀).

Сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора. В качестве коллиматора в предлагаемом способе используют перфорированные пластины, по крайней мере, с 4-мя отверстиями из непрозрачного для ЛИ материала с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенными с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, расположенными симметрично относительно геометрического центра коллиматора.

Кроме того, в качестве коллиматора используют пучок световодов, состоящий, по крайней мере, из 4-х световодов с диаметром, равным диаметру выходящего из коллиматора луча ЛИ, и размещенных с шагом от 1-4 диаметров выходящего из коллиматора луча ЛИ, при этом все световоды размещают перпендикулярно поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

При пропускании через коллиматор сформированного потока ЛИ обеспечивается снижение энергии возбуждения и одновременно оптимально минимизируем время до возбуждения детонации.

Под воздействием ЛИ на ВВ в облученной области образуется макроочаг самоподдерживающейся реакции, распространяющейся с дозвуковой скоростью. Если энергия, выделяющаяся при распространении макроочага, обеспечивает разгон процесса до сверхзвуковой скорости, то формируется детонационный режим. Если подведенной энергии недостаточно, чтобы обеспечить энерговыделение из макроочага, необходимое для разгона процесса до сверхзвуковой скорости, то под действием разгрузки он затухнет. Если имеется два таких макроочага, то в области их взаимодействия формируется реагирующая зона, которая в направлении инициирования распространяется с большей скоростью, чем каждый из очагов (как результирующая из векторного сложения скоростей границ макроочагов в предположении сферических фронтов).

В условиях не затухающих очагов:

- если скорость распространения очагов увеличивается, то в зоне взаимодействия распространение будет идти с большим ускорением, чем в макроочагах;

- если скорость распространения очагов постоянна, то в этой зоне распространение будет идти с ускорением.

В условиях затухающих очагов, если градиент скорости распространения каждого из очагов не слишком велик, то эта зона в области их взаимодействия также будет распространяться с ускорением.

Чем ближе расположены макроочаги, тем короче ускоряющий импульс от зоны их взаимодействия, но тем меньше градиент скорости при их затухании.

Выявленная экспериментально взаимосвязь указанных параметров позволяет оптимизировать процесс инициирования и подобрать соответствующие условия его эффективной реализации.

Таким образом:

- если энергии ЛИ, подведенной к каждому макроочагу, достаточно для установления в нем ускоряющегося сверхзвукового процесса, выходящего в последующем в детонационный режим, то создание двух и более очагов позволит добиться уменьшения времени до возбуждения детонации;

- если энергии ЛИ, подведенной к каждому макроочагу, недостаточно, то использование эффекта увеличения скорости распространения самоподдерживающегося процесса в зоне взаимодействия двух и более макроочагов позволяет при определенном соотношении энергии ЛИ, возбуждающего исходные макроочаги, и расстояния между ними сформировать в этой зоне ускоряющийся сверхзвуковой процесс, выходящий в последующем в детонационный режим. То есть при подводе ЛИ по двум и более каналам можно возбуждать в инициируемом элементе детонацию при энергии ЛИ, меньшей, чем при подвое по одному каналу.

- при оптимизации соотношения энергии ЛИ и расстояния между каналами подвода ЛИ можно добиться минимальной энергии, возбуждающей детонацию в инициируемом элементе, и минимального времени до ее возбуждения.

В предлагаемом способе инициирование светочувствительного взрывчатого вещества импульсом лазерного излучения осуществляется путем последовательного формирования импульса лазерного излучения (ЛИ) с последующей подачей сформированного импульса ЛИ на инициируемое светочувствительное ВВ, при этом исходящий от источника поток ЛИ разделяют на отдельные, по крайней мере, 4 луча, диаметр которых превышает критический диаметр детонации светочувствительного ВВ, с использованием коллиматора. Диаметры сформированных коллиматором лучей ЛИ и расстояние между ними связаны математической зависимостью с минимальной энергией светового импульса ЛИ, инициирующего детонацию светочувствительного ВВ, и временем до возбуждения детонации ВВ t=F (Q, x, ⌀), сформированные коллиматором лучи ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ и симметрично относительно геометрического центра коллиматора.

Результаты экспериментальных исследований по установлению оптимальных условий, необходимых для достижения заявленного технического результата, приведены в таблицах 1, 2.

В случае реализации способа прототипа, когда потоки ЛИ, подаваемые от заданного числа промежуточных лазеров с пиротехнической накачкой, пропускаются через независимые каналы оптических волокон, увеличение уровня потребляемой для возбуждения детонации энергии ЛИ достигается сложным как в технологическом, так и в конструкционном плане путем.

В случае инициирования ВВ традиционным методом фокусировки ЛИ на меньшую площадь (пятно) обеспечивается большая плотность энергии, благодаря чему достигается надежное инициирование при минимальной энергии излучения, пропорциональной отношению облучаемых поверхностей. Однако экономический эффект ограничен возможностями фокусирующей системы.

Таким образом, при использовании предлагаемого способа инициирования светочувствительного взрывчатого вещества импульсом ЛИ, прошедшего через диафрагму с регулярной перфорацией, обеспечивается возможность формирования минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами.

Пример 1. В лабораторных условиях предлагаемый способ был опробован на светочувствительном ВВ, для чего был выбран состав, представляющий собой смесь 93% масс., бензотрифураксана (БТФ) и 7% масс. Al, σ=0.95 г/см3; из которого был изготовлен заряд п. 1 (фиг. 1, а) диаметром 5 мм, высота заряда 10 мм. Инициирование заряда проводилось лазерным лучом через алюминиевый коллиматор п. 2 (фиг. 1), с помощью которого осуществлялось разделение потока ЛИ на отдельные, по крайней мере, 4 луча. Диаметр этих лучей превышает критический диаметр детонации светочувствительного ВВ. Сформированные коллиматором 4 луча ЛИ подают в направлении, перпендикулярном поверхности инициируемого светочувствительного ВВ п. 3 и симметрично относительно геометрического центра коллиматора.

Были измерены энергии потока ЛИ, прошедшего через коллиматор п. 2 с отверстием диаметром 1 мм и расстоянием между ними 1 мм.

Эти параметры определены по математической формуле

Q=F (t, x, ⌀) (1)

и приведены в таблицах 1, 2.

Пример 2. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора кварцевого оптоволокна диаметром 1 мм (фиг. 1, б).

Пример 3. В условиях примера 1 предлагаемый способ был осуществлен с использованием в качестве коллиматора полимерного оптоволокна диаметром 1 мм.

Результаты приведены в таблице 1 (где представлены данные измерений энергии ЛИ от луча ⌀5 мм, передаваемой через коллиматор).

Прошедшая через коллиматор энергия ~1/25 входящей энергии, т.е пропорциональна отношению площадей областей, на которые воздействует ЛИ. Причина снижения выходной энергии через оптоволокно по сравнению с диафрагмой может быть связана с потерями на входных и выходных границах. Погрешность определения времени задержки детонации ±0,1 мкс.

В таблице 2 приведены данные о временах задержки детонации при инициировании через коллиматор.

Как это показали примеры, при реализации предлагаемого способа обеспечивается упрощение, возможность получения минимального уровня энергии возбуждения детонации с одновременным уменьшением времени до возбуждения детонации.


СПОСОБ ИНИЦИИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОГО ВЗРЫВЧАТОГО ВЕЩЕСТВА СВЕТОВЫМ ИМПУЛЬСОМ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 241-250 из 663.
10.06.2015
№216.013.558f

Микросборка

Изобретение относится к микроэлектронике и может быть использовано для разработки микросборок различного назначения. Микросборка содержит корпус, на который установлена коммутационная плата с размещенными на ней активными и/или пассивными радиоэлементами, каждый из которых соединен своими...
Тип: Изобретение
Номер охранного документа: 0002553424
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5590

Способ определения прочностных свойств материалов при динамическом нагружении

Изобретение относится к области определения характеристик материалов при ударном нагружении, в частности к способам определения динамического предела текучести грунта при проникании в образец из исследуемого материала ударника при заданной ему средствами разгона скорости. Сущность: осуществляют...
Тип: Изобретение
Номер охранного документа: 0002553425
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5641

Способ формирования металлического компактного элемента

Изобретение относится к области экспериментальной физики, в частности к способу формирования металлического компактного элемента. Способ формирования металлического компактного элемента заключается в инициировании осесимметричного основного заряда взрывчатого вещества, разгоне металлической...
Тип: Изобретение
Номер охранного документа: 0002553611
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.571d

Автоматизированный комплекс для испытаний элементов электронно-компонентной базы на радиационную стойкость

Изобретение относится к радиационной технике и может быть использовано при проведении испытаний различных типов элементов электронно-компонентной базы (ЭКБ) на стойкость к воздействию импульсного ионизирующего излучения (ИИ). Сущность изобретения заключается в том, что автоматизированный...
Тип: Изобретение
Номер охранного документа: 0002553831
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58f9

Устройство инициирования

Изобретение относится к области радиоэлектроники и касается устройства инициирования. Устройство состоит из блока управления, содержащего источник питания, лазеры, и блока инициирования, содержащего преобразователь энергии лазерного излучения в напряжение и фотоэлектронный ключ. Блок управления...
Тип: Изобретение
Номер охранного документа: 0002554318
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a2d

Способ получения твердого раствора диоксида плутония в матрице диоксида урана

Изобретение относится к радиохимической промышленности и ядерной энергетике, направлено на получение смешанного диоксида (U,Pu)O и может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800)...
Тип: Изобретение
Номер охранного документа: 0002554626
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c1a

Бронезащитная преграда

Изобретение относится к броневым конструкциям, которые могут быть применены в индивидуальных и транспортных средствах защиты от воздействия пуль стрелкового оружия и высокоэнергетических осколков. Бронезащитная преграда содержит керамический элемент и подложку, заключенные в облицовку....
Тип: Изобретение
Номер охранного документа: 0002555119
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.609c

Устройство для измерения температурных параметров сверхпроводников

Изобретение относится к устройствам для исследования сверхпроводников с помощью электрических и магнитных средств и позволяет обеспечить высокую точность измерения температурных параметров сверхпроводников. В корпусе устройства установлены две катушки индуктивности. Оси катушек ориентированы...
Тип: Изобретение
Номер охранного документа: 0002556273
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d1

Устройство для измерения пиковых значений

Изобретение относится к измерительной технике и может быть использовано для выделения одиночных импульсов на фоне низкочастотного шума. Устройство содержит датчик, первый и второй операционные усилители (ОУ1, ОУ2), первый, второй, третий, четвертый, пятый и шестой резисторы, первый, второй,...
Тип: Изобретение
Номер охранного документа: 0002556327
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.626c

Устройство для дистанционного измерения параметров сигнала пьезодатчика

Изобретение относится к метрологии, в частности к средствам дистанционного контроля параметров пьезодатчиков. Устройство содержит пьезодатчик с нагрузкой, электроды которого соединены со входом усилителя тока, выход которого соединен кабельной измерительной линией с регистратором. Нагрузка...
Тип: Изобретение
Номер охранного документа: 0002556743
Дата охранного документа: 20.07.2015
Показаны записи 241-250 из 487.
10.06.2015
№216.013.558f

Микросборка

Изобретение относится к микроэлектронике и может быть использовано для разработки микросборок различного назначения. Микросборка содержит корпус, на который установлена коммутационная плата с размещенными на ней активными и/или пассивными радиоэлементами, каждый из которых соединен своими...
Тип: Изобретение
Номер охранного документа: 0002553424
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5590

Способ определения прочностных свойств материалов при динамическом нагружении

Изобретение относится к области определения характеристик материалов при ударном нагружении, в частности к способам определения динамического предела текучести грунта при проникании в образец из исследуемого материала ударника при заданной ему средствами разгона скорости. Сущность: осуществляют...
Тип: Изобретение
Номер охранного документа: 0002553425
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5641

Способ формирования металлического компактного элемента

Изобретение относится к области экспериментальной физики, в частности к способу формирования металлического компактного элемента. Способ формирования металлического компактного элемента заключается в инициировании осесимметричного основного заряда взрывчатого вещества, разгоне металлической...
Тип: Изобретение
Номер охранного документа: 0002553611
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.571d

Автоматизированный комплекс для испытаний элементов электронно-компонентной базы на радиационную стойкость

Изобретение относится к радиационной технике и может быть использовано при проведении испытаний различных типов элементов электронно-компонентной базы (ЭКБ) на стойкость к воздействию импульсного ионизирующего излучения (ИИ). Сущность изобретения заключается в том, что автоматизированный...
Тип: Изобретение
Номер охранного документа: 0002553831
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.58f9

Устройство инициирования

Изобретение относится к области радиоэлектроники и касается устройства инициирования. Устройство состоит из блока управления, содержащего источник питания, лазеры, и блока инициирования, содержащего преобразователь энергии лазерного излучения в напряжение и фотоэлектронный ключ. Блок управления...
Тип: Изобретение
Номер охранного документа: 0002554318
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a2d

Способ получения твердого раствора диоксида плутония в матрице диоксида урана

Изобретение относится к радиохимической промышленности и ядерной энергетике, направлено на получение смешанного диоксида (U,Pu)O и может быть использовано для изготовления ядерного смешанного уран-плутониевого МОКС-топлива реакторов ВВЭР-1000 и реакторов на быстрых нейтронах (БН-600, БН-800)...
Тип: Изобретение
Номер охранного документа: 0002554626
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5c1a

Бронезащитная преграда

Изобретение относится к броневым конструкциям, которые могут быть применены в индивидуальных и транспортных средствах защиты от воздействия пуль стрелкового оружия и высокоэнергетических осколков. Бронезащитная преграда содержит керамический элемент и подложку, заключенные в облицовку....
Тип: Изобретение
Номер охранного документа: 0002555119
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.609c

Устройство для измерения температурных параметров сверхпроводников

Изобретение относится к устройствам для исследования сверхпроводников с помощью электрических и магнитных средств и позволяет обеспечить высокую точность измерения температурных параметров сверхпроводников. В корпусе устройства установлены две катушки индуктивности. Оси катушек ориентированы...
Тип: Изобретение
Номер охранного документа: 0002556273
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d1

Устройство для измерения пиковых значений

Изобретение относится к измерительной технике и может быть использовано для выделения одиночных импульсов на фоне низкочастотного шума. Устройство содержит датчик, первый и второй операционные усилители (ОУ1, ОУ2), первый, второй, третий, четвертый, пятый и шестой резисторы, первый, второй,...
Тип: Изобретение
Номер охранного документа: 0002556327
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.626c

Устройство для дистанционного измерения параметров сигнала пьезодатчика

Изобретение относится к метрологии, в частности к средствам дистанционного контроля параметров пьезодатчиков. Устройство содержит пьезодатчик с нагрузкой, электроды которого соединены со входом усилителя тока, выход которого соединен кабельной измерительной линией с регистратором. Нагрузка...
Тип: Изобретение
Номер охранного документа: 0002556743
Дата охранного документа: 20.07.2015
+ добавить свой РИД