×
10.04.2016
216.015.2f40

Результат интеллектуальной деятельности: ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к тепломассообменным аппаратам. Вихревой испаритель-конденсатор, состоящий из вертикального цилиндрического корпуса с крышкой и днищем, технологическими штуцерами, камерами для ввода и вывода теплоносителей, цилиндрических труб, снабженных распределителями жидкости и внутренними трубами, на поверхности которых выполнены сквозные каналы, к боковым кромкам которых плотно присоединены профилированные пластины, установленные в направляющих шайбах, образующие завихрители для обеспечения вращательно поступательного движения пара (газа), размещенные по высоте цилиндрических труб, отличающийся тем, что под каждым завихрителем установлены опорные шайбы, снабженные каналами для стекания теплоносителя, отношение внутреннего диаметра опорной шайбы d к внутреннему диаметру цилиндрической трубы D равно d/D=0,6-0,9, а в направляющих шайбах выполнены сквозные профилированные отверстия для перемещения пара (газа) в осевом направлении, причем отношение расстояния между двумя соседними опорными шайбами L к высоте столба вращающегося газо-жидкостного слоя H выполняется равным L/H≤1, где величина Η равна H - высота газожидкостного слоя, м, h - высота каналов в завихрителе, м, φ - газосодержание (доля газа в жидкости), D - диаметр цилиндрической трубы, м, R - радиус завихрителя, м, u - скорость газа в каналах завихрителя, м/с, m - масса вращающейся воды (жидкости), кг. Технический результат заключается в увеличении производительности. 5 ил.
Основные результаты: Вихревой испаритель-конденсатор, состоящий из вертикального цилиндрического корпуса с крышкой и днищем, технологическими штуцерами, камерами для ввода и вывода теплоносителей, цилиндрических труб, снабженных распределителями жидкости и внутренними трубами, на поверхности которых выполнены сквозные каналы, к боковым кромкам которых плотно присоединены профилированные пластины, установленные в направляющих шайбах, образующие завихрители для обеспечения вращательно поступательного движения пара (газа), размещенные по высоте цилиндрических труб, отличающийся тем, что под каждым завихрителем установлены опорные шайбы, снабженные каналами для стекания теплоносителя, отношение внутреннего диаметра опорной шайбы d к внутреннему диаметру цилиндрической трубы D равно d/D=0,6-0,9, а в направляющих шайбах выполнены сквозные профилированные отверстия для перемещения пара (газа) в осевом направлении, причем отношение расстояния между двумя соседними опорными шайбами L к высоте столба вращающегося газожидкостного слоя H выполняется равным L/H ≤ 1, где величина H равна H - высота газожидкостного слоя, м,h - высота каналов в завихрителе, м, - газосодержание (доля газа в жидкости),D - диаметр цилиндрической трубы, м,R - радиус завихрителя, м,u- скорость газа в каналах завихрителя, м/с,m - масса вращающейся воды (жидкости), кг, - угловая скорость вращения, с, - соответственно плотность жидкости и газа, кг/м, - поверхностный коэффициент.

Изобретение относится к тепломассообменным аппаратам и может быть использовано в качестве конденсаторов, испарителей, нагревателей, дефлегматоров, выпарных аппаратов в нефтехимической, химической, микробиологической, пищевой и других отраслях промышленности.

Известен пленочный выпарной аппарат со стекающей пленкой, состоящий из вертикального цилиндрического корпуса с крышкой и днищем, снабженного технологическими штуцерами, греющей камерой и камерами для ввода и вывода концентрированного раствора, вторичного пара, трубопроводов для ввода и вывода хладагента, цилиндрических и внутренних труб, патрубков для отвода конденсата вторичного пара. В полости цилиндрических труб по их длине с зазором относительно поверхности цилиндрических и внутренних труб установлены обечайки, в нижней части которых на их наружной поверхности под углом к оси аппарата помещены пластины, обеспечивающие вращательное движение потоку пара [1].

Однако этот аппарат имеет сравнительно небольшую производительность, вследствие низких значений величины коэффициента теплоотдачи, достигаемого при пленочном течении, который 2-4 раза ниже, чем при теплоотдаче во вращающемся слое [2]. Наличие пластин создает вращательное движение только потоку пара (газа), но не обеспечивает вращательное движение жидкости на теплопередающей поверхности и, тем самым, недостаточно интенсифицирует теплообмен.

Наиболее близким к данной конструкции по технической сущности является пленочный выпарной аппарат со стекающей пленкой [3], состоящий из вертикального цилиндрического корпуса с крышкой и днищем, снабженного технологическими штуцерами и камерами для ввода и вывода концентрированного раствора, греющей камерой, трубопроводами для ввода и вывода хладагента, отвода конденсата вторичного пара. Аппарат снабжен патрубками, цилиндрическими трубами с кольцевой спиралью и распределительным элементом для орошения и внутренними трубами, выполненными в виде змеевика. В кольцевых полостях, образованных цилиндрическими и внутренними трубами, установлены направляющие шайбы, между которыми размещены профилированные пластины, образующие каналы для прохода парожидкостной смеси, у которых одна из боковых кромок размещена по касательной к внутренней поверхности шайбы, причем на боковой поверхности пластин выполнены продольные канавки и установлен лист из пористого материала.

Однако данное устройство не позволяет обеспечить высокую производительность аппарата по причине сравнительно низких значений величины коэффициента теплоотдачи со стороны стекающей пленки жидкости аналогично, что и в аппарате, взятом за аналог. Наличие шайб с профилированными пластинами, которые образуют тангенциальные завихрители, также не обеспечивает вращательное движение слоя жидкости на теплопередающей поверхности (величины касательных напряжений силы трения между потоком пара (газа) и жидкостью недостаточны для создания вращающегося слоя на теплопередающей поверхности), что не обеспечивает полное орошение (смачиваемость) теплопередающей поверхности пленкой жидкости при больших тепловых потоках, то есть наблюдается появление сухих несмоченных участков на теплопередающей поверхности, а также сворачивание пленки в жгуты и струи, что неэффективно. При больших расходах пара (газа) обеспечивается вращательно-поступательное перемещение пленки (восходящий либо нисходящий прямоток), что, как уже показано ранее [2], не обеспечивает интенсивный теплообмен.

Изобретение решает задачу увеличения производительности по удельной тепловой нагрузке (тепловой поток Q с единицы поверхности F, q=Q/F, Вт/м2), а следовательно, и по испаряемой влаге за счет обеспечения устойчивого вращения газожидкостного слоя.

Под устойчивым вращением понимается полное орошение (смачивание) поверхности и прижатие вращающегося слоя жидкости к теплопередающей поверхности силами инерции и давления на жидкость струй пара (газа), выходящих из каналов завихрителя. Следует отметить, что в заявляемом устройстве вращение жидкости обеспечивается не касательными напряжениями сил трения между вращающимся потоком паром (газа) и жидкостью, а путем воздействия на несжимаемую жидкость, размещенную на опорных шайбах, силы инерции и динамического напора струй.

Технический результат заключается в увеличении производительности за счет обеспечения устойчивого вращения газожидкостного слоя. Вращающийся газожидкостный слой на теплопередающей поверхности обеспечивается инерционной (центробежной) силой и динамическим напором струй газа (пара), выходящих из каналов завихрителя, вытесняющих массу жидкости, размещенную на опорных шайбах, вверх на высоту Н и обеспечивающих вращение этой жидкости за счет крутки объема жидкости, размещенного на опорных шайбах, а не за счет сил трения между газом и стекающей пленкой, как это частично обеспечивается при восходящем или нисходящем прямотоке, что обуславливает интенсивное вращение жидкости при низких расходах пара (газа) и высокой интенсивности теплоотдачи.

Указанный технический результат достигается тем, что в вихревом испарителе-конденсаторе, состоящем из вертикального цилиндрического корпуса с крышкой, днищем и технологическими штуцерами, камерами для ввода и вывода теплоносителей, цилиндрических труб, снабженных распределителями жидкости, и внутренними трубами, на поверхности которых выполнены сквозные каналы, к боковым кромкам которых плотно присоединены профилированные пластины, установленные в направляющих шайбах, образующие завихрители, размещенные по высоте цилиндрических труб для обеспечения вращательного движения пара (газа), согласно изобретению под каждым завихрителем установлена опорная шайба, снабженная каналами для перетекания теплоносителя, а в направляющих шайбах выполнены сквозные профилированные отверстия для прохода пара (газа) в осевом направлении, отношение внутреннего диаметра опорной шайбы к внутреннему диаметру цилиндрической трубы равно d/D=0,6-0,9, причем отношение расстояния между двумя опорными шайбами L к высоте столба вращающегося газожидкостного слоя Н выполняется равным

Наличие опорных шайб, установленных под каждым завихрителем, в которых выполнены каналы для перетекания теплоносителя с одной опорной шайбы на другую, а также выполнение в направляющих шайбах сквозных профилированных отверстий для перемещения пара (газа) в осевом направлении, позволяет обеспечить вращающийся газожидкостный слой на поверхности цилиндрических труб за счет вытеснения жидкости, размещенной на опорных шайбах, струями газа и центробежной силой, что обеспечивает полное орошение (смачиваемость) теплопередающей поверхности при высоких тепловых нагрузках и интенсифицирует процесс теплообмена.

Наличие на опорных шайбах каналов (прорезей, профилированных отверстий) позволяет распределять теплоноситель по опорным шайбам и, тем самым, обеспечивает орошение всей поверхности цилиндрических труб.

Наличие на направляющих шайбах сквозных профилированных отверстий позволяет пару (газу) беспрепятственно перемещаться в осевом направлении, обеспечивая, тем самым, интенсивное вращение и теплосъем при высоких тепловых нагрузках.

Отношение внутреннего диаметра опорной шайбы к внутреннему диаметру цилиндрической трубы, равное d/D=0,6-0,9, позволяет создавать заданную толщину вращающегося газожидкостного слоя. При отношении d/D<0,6 снижается угловая скорость вращения жидкости из-за увеличения ее массы на опорной шайбе, а при d/D>0,9 не обеспечивается орошение поверхности, что в обоих случаях приводит к снижению теплоотдачи, а следовательно, и производительности.

Выполнение отношения расстояния между двумя опорными шайбами L к высоте столба вращающегося газожидкостного слоя Н равным L/H≤1 позволяет обеспечить полное орошение теплопередающей поверхности (газожидкостный слой Н полностью смачивает теплопередающую поверхность), что позволяет увеличить производительность по удельной тепловой нагрузке.

Расчетная зависимость для определения величины Н получена на основании равновесия сил, действующих на вращающийся газожидкостный слой

где F - сила, вызванная давлением столба вращающегося газожидкостного слоя;

Fин - сила инерции от вращения;

Fдин- сила, вызванная давлением струй газа (пара), выходящих из каналов завихрителя.

Н - высота газожидкостного слоя, м;

h - высота каналов в завихрителе, м;

φ - газосодержание (доля газа в жидкости);

D - диаметр цилиндрической трубы, м;

Rзав - радиус завихрителя, м;

иг - скорость газа в каналах завихрителя, м/с;

m - масса вращающейся воды (жидкости), кг;

w - угловая скорость вращения, с-1;

ρ, ρг - соответственно плотность жидкости и газа, кг/м3.

После преобразования имеем

где χ - поверхностный коэффициент.

На фиг. 1 представлен общий вид испарителя-конденсатора;

На фиг. 2 представлена часть цилиндрической и внутренней трубы;

На фиг. 3 представлен разрез цилиндрической трубы по сечению А-А;

На фиг. 4 представлен разрез цилиндрической трубы по сечению Б-Б;

На фиг. 5 представлена схема распределения потоков.

Вихревой испаритель-конденсатор состоит из вертикального цилиндрического корпуса 1, снабженного крышкой 2 и днищем 3, технологическими штуцерами для ввода 4 пара-(газа) и вывода 5 пара (парогазовой смеси), штуцера 6 для ввода технологического пара и штуцера 7 для отвода конденсата, а также штуцеров 8 и 9 для ввода и вывода теплоносителя (воды). Аппарат снабжен камерами 10 для ввода технологического пара и вывода теплоносителя 11, цилиндрическими трубами 12 с отверстиями для ввода теплоносителя (воды) 13 и распределителя жидкости 14. Аппарат снабжен также внутренними трубами 15, заглушенными сверху, на поверхности которых выполнены сквозные каналы 16, к боковым кромкам которых плотно присоединены профилированные пластины 17, установленные в направляющих шайбах 18 и 19, образующие завихрители 20 для обеспечения вращательно поступательного движения пара (газа), размещенные по высоте цилиндрических труб 12. Под завихрителями 20 на внутренней поверхности цилиндрических труб 12 установлены на расстоянии L опорные шайбы 21, снабженные каналами 22 (отверстиями) для стекания теплоносителя. В направляющих шайбах 18 и 19 выполнены профилированные отверстия 23 для перемещения пара (газа) в осевом направлении цилиндрических труб.

Диаметр цилиндрических труб равен 28-500 мм.

Вихревой испаритель-конденсатор работает следующим образом. Теплоноситель (вода) через штуцер 8 подается в аппарат и распределяется на верхней трубной решетке, затем через отверстия 13 и распределитель жидкости 14 поступает на внутреннюю поверхность цилиндрических труб 12 и стекает на опорные шайбы 21. Пар (газ) поступает в аппарат через штуцер 4 и распределяется по цилиндрическим трубам 12, поступает в сквозные каналы 16 и далее в завихрители 20. На выходе из каналов завихрителей 20, образованных профилированными пластинами 17, пар (газ) приобретает вращательное движение и скоростной напор. Вследствие чего струи газа и сила инерции, вызванная вращением, вытесняют жидкость, размещенную на опорных шайбах 21, в виде газожидкостного слоя на высоту Н, обеспечивая его вращение и прижатие к внутренней поверхности цилиндрических труб 12. Кипение вращающегося газожидкостного слоя обеспечивается за счет теплового потока, подводимого через стенку цилиндрических труб 12, вызванного паром, поступающим в аппарат через штуцер 6 в камеру 10. Теплоноситель перетекает на опорные шайбы 21 через каналы 22, а затем поступает в камеру 11 и через штуцер 9 отводится из аппарата. Образованный при кипении пар смешивается с поступающим через штуцер 4 паром (газом) и через профилированные отверстия 23 перемещается в осевом направлении в кольцевом зазоре, образованном цилиндрической трубой 12 и внутренней трубой 15. В верхней части аппарата пар (парогазовая смесь) выводится через штуцер 5. Пар (теплоноситель), подводимый через штуцер 6, сконденсировавшись, отводится через штуцер 7.

Использование предлагаемого изобретения позволяет увеличить производительность аппарата, снизить капитальные и текущие затраты, а следовательно, и себестоимость выпускаемого продукта.

Источники информации:

1. RU №2324516, МКЛ B01D 1/22, 2007 г, бюл. №14, 2008.

2. Войнов Н.А., Путинцева Н.А., Вырина Е.Е. Теплообмен в воздушном вихревом конденсаторе, ж. Химическая промышленность №6, т. 90, 2013 г. с. 291-293 (рис. 2 и рис. 4).

3. RU №2314139 МКЛ B01D 1/22; B01D 3/28 2006 г, бюл. №1, 2008.

Вихревой испаритель-конденсатор, состоящий из вертикального цилиндрического корпуса с крышкой и днищем, технологическими штуцерами, камерами для ввода и вывода теплоносителей, цилиндрических труб, снабженных распределителями жидкости и внутренними трубами, на поверхности которых выполнены сквозные каналы, к боковым кромкам которых плотно присоединены профилированные пластины, установленные в направляющих шайбах, образующие завихрители для обеспечения вращательно поступательного движения пара (газа), размещенные по высоте цилиндрических труб, отличающийся тем, что под каждым завихрителем установлены опорные шайбы, снабженные каналами для стекания теплоносителя, отношение внутреннего диаметра опорной шайбы d к внутреннему диаметру цилиндрической трубы D равно d/D=0,6-0,9, а в направляющих шайбах выполнены сквозные профилированные отверстия для перемещения пара (газа) в осевом направлении, причем отношение расстояния между двумя соседними опорными шайбами L к высоте столба вращающегося газожидкостного слоя H выполняется равным L/H ≤ 1, где величина H равна H - высота газожидкостного слоя, м,h - высота каналов в завихрителе, м, - газосодержание (доля газа в жидкости),D - диаметр цилиндрической трубы, м,R - радиус завихрителя, м,u- скорость газа в каналах завихрителя, м/с,m - масса вращающейся воды (жидкости), кг, - угловая скорость вращения, с, - соответственно плотность жидкости и газа, кг/м, - поверхностный коэффициент.
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
ВИХРЕВОЙ ИСПАРИТЕЛЬ-КОНДЕНСАТОР
Источник поступления информации: Роспатент

Показаны записи 31-33 из 33.
12.01.2017
№217.015.596b

Рольганг

Изобретение относится к деревообрабатывающей промышленности, в частности к устройствам для продольного перемещения древесного долготья. Рольганг включает расположенные на горизонтальном основании грузонесущую цепь и вращающиеся на опорах ролики. Рольганг дополнительно содержит две грузонесущие...
Тип: Изобретение
Номер охранного документа: 0002588182
Дата охранного документа: 27.06.2016
09.05.2019
№219.017.4fcd

Способ ректификации

Изобретение относится к способам ректификации смеси жидкостей методами перегонки. Способ ректификации включает противоточное взаимодействие стекающей жидкости с поднимающимся паром, образование пара за счет испарения стекающей по контактным ступеням в куб колонны флегмы, созданной из пара в...
Тип: Изобретение
Номер охранного документа: 0002437698
Дата охранного документа: 27.12.2011
29.06.2019
№219.017.9f9f

Устройство для измельчения отходов производства

Изобретение относится к области дробления материалов и предназначено для измельчения отходов производства. Устройство содержит статор-корпус, в котором на ведущих валах установлены два ротора. Каждый ротор состоит из двух головок, повернутых одна относительно другой на 1/2 угла между элементами...
Тип: Изобретение
Номер охранного документа: 0002471119
Дата охранного документа: 27.12.2012
Показаны записи 31-40 из 52.
27.01.2015
№216.013.21bd

Способ получения производных 3-сульфата аллобетулина

Изобретение относится к способу получения производных 3-сульфата аллобетулина формулы (I). Сульфатирование аллобетулина проводят в 1,4-диоксане смесью сульфаминовой кислоты и мочевины при температуре 70-75°C в течение 3-4 часов, а выделение продукта проводят охлаждением реакционной массы,...
Тип: Изобретение
Номер охранного документа: 0002540085
Дата охранного документа: 27.01.2015
27.02.2015
№216.013.2cea

Композиция ингредиентов для приготовления ароматного спирта, используемого в водке особой

Изобретение относится к ликероводочной промышленности. Композиция ингредиентов для приготовления ароматного спирта, используемого в водке особой, содержит в качестве исходных ингредиентов следующие компоненты, кг/1000 дал композиции: хвоя можжевельника сибирского 34,0-36,0, плоды кориандра...
Тип: Изобретение
Номер охранного документа: 0002542966
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3977

Способ стряхивания шишек кедровых

Изобретение относится к области лесного хозяйства и может быть использовано для отрыва шишек, преимущественно кедровых. Способ включает стряхивание спелых шишек на землю. Стряхивание шишек осуществляют аэродинамическим потоком, создаваемым воздушным потоком летательного аппарата, воздействующим...
Тип: Изобретение
Номер охранного документа: 0002546199
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3fcb

Способ изготовления электродов литий-ионного аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении литий-ионного и литий-полимерного аккумулятора. Техническим результатом изобретения является повышение удельной разрядной емкости, уменьшение экологического риска и снижение взрывобезопасности....
Тип: Изобретение
Номер охранного документа: 0002547819
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.442a

Способ определения вязкости неньютоновских жидкостей

Изобретение относится к измерительной технике, а именно к способам измерения вязкости жидкостей. Способ определения вязкости неньютоновских жидкостей включает прокачку их через канал, а вязкость определяется из выражения , где: η - вязкость неньютоновской жидкости, Па·с; N - полезная мощность,...
Тип: Изобретение
Номер охранного документа: 0002548948
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.49bd

Способ получения полимерного сорбента

Изобретение относится к технологии получения сорбентов, используемых в природоохранных целях для локализации сбора и утилизации нефти и нефтепродуктов с загрязненных участков поверхности воды и грунта. Вспененная мелкодисперсная водная эмульсия содержит 25-35 мас.ч. малотоксичной...
Тип: Изобретение
Номер охранного документа: 0002550384
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4cab

Способ сушки круглых лесоматериалов

Изобретение относится к деревообработке, а именно к деревянному домостроению, и может быть использовано при изготовлении домов из круглых, в том числе оцилиндрованных лесоматериалов. Способ сушки круглых лесоматериалов включает конвективную камерную сушку, причем перед сушкой древесину...
Тип: Изобретение
Номер охранного документа: 0002551141
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.50f9

Переносной грунтомет

Изобретение относится к устройствам, предназначенным для прокладки защитных минерализованных полос, а также тушения низовых пожаров грунтом, особенно в безводных лесных массивах. Переносной грунтомет, содержащий рабочий орган с метателями, привод управления рабочим органом и направляющий кожух,...
Тип: Изобретение
Номер охранного документа: 0002552250
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.5a92

Способ проводки древесины в плотах в период ледового режима на внутренних водных путях

Изобретение относится к лесной промышленности и предназначено для проводки плотов в период ледового режима на внутренних водных путях. Способ включает прокладку ледового канала шириной большей ширины плота на 20-22% при толщине льда 0,05-0,4 м. Прокладка ледового канала осуществляется в...
Тип: Изобретение
Номер охранного документа: 0002554727
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.61a0

Размалывающая гарнитура для дисковой мельницы

Изобретение относится к размалывающим гарнитурам дисковых мельниц и может быть использовано в целлюлозно-бумажной промышленности на стадии тонкого размола, а также при размоле коротковолокнистой массы, когда необходимо сохранить природную длину волокна. Размалывающая гарнитура для дисковой...
Тип: Изобретение
Номер охранного документа: 0002556534
Дата охранного документа: 10.07.2015
+ добавить свой РИД