×
10.04.2016
216.015.2e71

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

Вид РИД

Изобретение

№ охранного документа
0002579359
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины. Причем в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Х, [Х, Х] - фиксированные пределы изменения Х, соответствующие фиксированным пределам , - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки. Технический результат заключается в упрощении процесса измерения. 2 ил.
Основные результаты: Способ измерения физической величины, при котором возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, отличающийся тем, что в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где X- начальное, при номинальном значении измеряемой физической величины, значение Х, [X, X] - фиксированные пределы изменения X, соответствующие фиксированным пределам , A(X) - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. К их числу относятся механические величины, геометрические параметры объектов, физические свойства веществ и др. К ним же относятся также электрофизические и другие параметры контролируемых объектов (материалов, веществ).

Известен способ измерения физической величины, заключающийся в размещении контролируемого объекта в резонаторе (колебательном контуре с сосредоточенными параметрами, объемном или открытом ВЧ-, СВЧ-резонаторе и др.) и измерении характеристики этого резонатора (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. Стр. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. Стр. 168-177). К числу таких характеристик относятся собственная (резонансная) частота колебаний, добротность резонатора и др., которые могут изменяться в зависимости от физических или (и) геометрических параметров контролируемого объекта. В частности, известен способ измерения физического параметра, который состоит в возбуждении колебаний в резонаторе, в поле которого размещают контролируемый объект, и регистрации одного из параметров амплитудно-частотной характеристики (АЧХ). В качестве регистрируемого параметра используют собственную (резонансную) частоту колебаний резонатора.

Известен также способ измерения (RU 2029247, 20.02.1995), который заключается в возбуждении в резонаторе частотно-модулированных колебаний в фиксированном диапазоне частот и регистрации площади, покрываемой значениями амплитуды при девиации частоты в указанном диапазоне частот, т.е. площади под резонансной кривой. Данный способ характеризуется существенно большей чувствительностью к измеряемому параметру по сравнению со способом, в котором информативным параметром служит резонансная частота колебаний.

Недостатком этого способа является его достаточно сложная реализация. Она предполагает наличие генератора частотно-модулированных колебаний, подсоединяемого к резонатору, который обеспечивает девиацию частоты колебаний в достаточно широких пределах, соответствующих возможным значениям резонансной частоты, зависящей от величины измеряемого параметра.

Известно также техническое решение (RU 2427851, 27.08.2011), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в возбуждении в резонаторе частотно-модулированных колебаний на фиксированной частоте, определении амплитудно-частотной характеристики при изменении начальной собственной частоты резонатора в фиксированных пределах и регистрации площади, покрываемой значениями амплитуды, т.е. площади под резонансной кривой.

Недостатком способа-прототипа является достаточно сложная реализация, которая при измерениях с применением волноводных резонаторов может быть упрощена: изменение начальной собственной частоты резонатора в фиксированных пределах возможно в данном случае производить путем измерения параметров оконечной нагрузки такого резонатора.

Техническим результатом настоящего изобретения является упрощение процесса измерения.

Технический результат в предлагаемом способе измерения физической величины достигается тем, что возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах [fp1, fp2] определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Хн, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Хн, [Хн1, Хн2] - фиксированные пределы изменения Хн0, соответствующие фиксированным пределам [fp1, fp2], - амплитуда колебаний в волноводном резонаторе при величине Хн0 оконечной нагрузки.

Предлагаемый способ поясняется чертежами.

На фиг. 1 приведен график зависимости амплитуды колебаний от начального значения реактивного сопротивления оконечной нагрузки волноводного резонатора.

На фиг. 2 приведена схема устройства для реализации предлагаемого способа.

Здесь показаны волноводный резонатор 1, волновод 2, оконечная нагрузка 3, генератор 4, функциональный элемент 5, детектор 6, интегратор 7, регистратор 8.

Способ реализуется следующим образом.

Колебания фиксированной частоты f подаются в волноводный резонатор от генератора фиксированной частоты. При совпадении этой частоты f с собственной (резонансной) частотой fp волноводного резонатора амплитуда А колебаний в нем принимает максимальное значение A0. Согласно предлагаемому способу, как и в способе-прототипе, возбуждение колебаний осуществляют на фиксированной частоте f, определяют его амплитудно-частотную характеристику при изменении в фиксированных пределах [fp1, fp2] начального значения собственной (резонансной) частоты fp волноводного резонатора и вычисляют площадь S под ней, по которой судят о значении измеряемой физической величины х. В предлагаемом способе в качестве резонатора применяют волноводный резонатор 1, образованный волноводом 2 с оконечной нагрузкой 3, имеющей реактивное сопротивление Хн. От величины Хн зависит значение частоты волноводного резонатора. В общем случае оконечной нагрузкой волноводного резонатора может являться комплексное сопротивление Zн=Rн+jХн, где Rн - активная составляющая Zн. Именно реактивная составляющая Хн комплексного сопротивления Zн влияет на значение и ее изменение при изменении Хн.

Пределы [fp1, fp2] изменения частоты и, соответственно, пределы [Хн1, Хн2] изменения начального значения величины Хн должны соответствовать диапазону возможных значений [х1, х2] измеряемой физической величины х. На фиг. 1 приведен график функции при изменении в фиксированных пределах [Хн1, Хн2], соответствующих пределам [fp1, fp2] изменения частоты . Максимальное значение амплитуды А=А0 имеет место при значении , то есть на частоте , равной фиксированной частоте f генератора.

При измерениях с применением волноводного резонатора (отрезка длинной линии, объемного волноводного резонатора и др.) изменяемым параметром резонатора, влияющим на начальное значение его собственной частоты , может являться, в частности, какой-либо геометрический параметр оконечной нагрузки резонатора или (и) электрофизический параметр вещества, находящегося в электромагнитном поле этой оконечной нагрузки, а также совокупность указанных параметров. Для волноводного резонатора с колебаниями волноводных типов Hmnp или Emnp известны и применяются реактивные компоненты, в частности диафрагмы емкостного и индуктивного типа в волноводах (Семенов Н.А. Техническая электродинамика. М.: Связь. 1973. С. 334-340). Такая реактивная компонента может быть в данном случае оконечной нагрузкой волноводного резонатора, ей можно управлять и изменять, тем самым, значение .

Однако проще и эффективнее осуществить электрически управляемую перестройку в фиксированных пределах [Хн1, Хн2] значения и, следовательно, произвести изменение (частотную модуляцию) частоты волноводного резонатора в соответствующих пределах [fp1, fp2]. В частности для волноводного резонатора в виде отрезка длинной линии с колебаниями типа ТЕМ в качестве такого модулятора может быть применена оконечная нагрузка в виде электрически управляемого сосредоточенного реактивного сопротивления Хн - переменной индуктивности L или переменной емкости С. При этом, соответственно, Хн=2πfL, Хн=1/2πfC. Наличие на конце отрезка однородной длинной линии индуктивности L эквивалентно удлинению короткозамкнутого на конце отрезка длинной линии на величину , а наличие емкости С - эквивалентно удлинению разомкнутого на конце отрезка длинной линии на величину . В этих формулах с - скорость света, W - волновое (характеристическое) сопротивление длинной линии (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. С. 10-29, 42-50).

В качестве переменной емкости С может быть применен, в частности, диод с управляемой емкостью - варикап (Давыдова Н.С., Данюшевский Ю.З. Диодные генераторы и усилители СВЧ. М.: Радио и связь. 1986. 184 с).

Следовательно, изменяя величину оконечной реактивной нагрузки отрезка длинной линии - индуктивности L в пределах [L1, L2] или емкости С в пределах [С1, С2], соответствующих пределам [fp1, fp2] изменения частоты волноводного резонатора - отрезка длинной линии, можно при фиксированной частоте f генератора производить измерение площади S под соответствующей резонансной кривой и, следовательно, определить искомое значение х измеряемой физической величины.

Параметр S представляет собой площадь под амплитудно-частотной характеристикой - резонансной кривой, т.е. площадь, покрываемую значениями амплитуды А при изменении величины в диапазоне [Хн1, Хн2], соответствующем диапазону изменения начальной собственной частоты резонатора в фиксированных пределах [fp1, fp2]:

Диапазон [Хн1, Хн2] должен соответствовать диапазону частот колебаний [fp1, fp2], возбуждаемых в резонаторе на фиксированной частоте f генератора.

На фиг. 2 приведена схема устройства для реализации предлагаемого способа. Здесь волноводный резонатор 1 содержит волновод 2, который имеет на конце оконечную нагрузку 3. С помощью генератора 4 в волноводном резонаторе 1 возбуждают электромагнитные колебания на фиксированной частоте f. С применением функционального элемента 5 производят изменение начального (т.е. при некотором номинальном значении х0 измеряемой физической величины х) реактивного сопротивления Хн оконечной нагрузки 3 волноводного резонатора 1. Значение изменяется в фиксированных пределах [Хн1 и Хн2] и зависит, в свою очередь, от, по меньшей мере, одного параметра а оконечной нагрузки резонатора, изменяющегося в фиксированных пределах [а1, а2] с применением функционального элемента 4. К выходу резонатора 1 подсоединена цепочка последовательно соединенных детектора 6, интегратора 7 и регистратора 8. В регистраторе 8 определяют получаемое на выходе интегратора 7 значение функции S, выражаемой формулой (1), при девиации значения в пределах диапазона [Xн1, Хн2]. Этот диапазон должен соответствовать пределам изменения значений [х1, х2] измеряемой физической величины x.

Таким образом, данный способ измерения физической величины характеризуется упрощением процесса измерения с применением волноводного резонатора за счет проведения измерений площади под амплитудно-частотной характеристикой на фиксированной частоте при изменении начальной собственной частоты резонатора в фиксированных пределах вследствие изменения начального значения оконечной реактивной нагрузки резонатора.

Способ измерения физической величины, при котором возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, отличающийся тем, что в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где X- начальное, при номинальном значении измеряемой физической величины, значение Х, [X, X] - фиксированные пределы изменения X, соответствующие фиксированным пределам , A(X) - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки.
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
Источник поступления информации: Роспатент

Показаны записи 61-61 из 61.
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
Показаны записи 71-80 из 94.
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bf5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002671936
Дата охранного документа: 07.11.2018
20.03.2019
№219.016.e777

Способ определения физических свойств жидкостей или газов

Изобретение относится к области измерительной техники и может быть использованы для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, газов), находящихся в емкостях (технологических резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002415409
Дата охранного документа: 27.03.2011
10.04.2019
№219.017.07bf

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Техническим результатом изобретения является расширение границ области применения датчика давления и повышение его чувствительности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408856
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.4377

Устройство для определения содержания спирта и сахара в вине

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации различных водосодержащих растворов, в частности концентрации спирта и сахара в вине. Предлагается устройство, содержащее первый и второй чувствительные элементы в виде,...
Тип: Изобретение
Номер охранного документа: 0002413218
Дата охранного документа: 27.02.2011
09.05.2019
№219.017.50ab

Способ определения влагосодержания вещества

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам. В частности, оно может быть применено при...
Тип: Изобретение
Номер охранного документа: 0002468358
Дата охранного документа: 27.11.2012
+ добавить свой РИД