×
10.04.2016
216.015.2d20

Результат интеллектуальной деятельности: СПОСОБ КОНВЕРТИРОВАНИЯ ТУРБОВАЛЬНОГО АВИАЦИОННОГО ДВИГАТЕЛЯ В НАЗЕМНУЮ ГАЗОТУРБИННУЮ УСТАНОВКУ

Вид РИД

Изобретение

Аннотация: Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат повышенной пропускной способности. В горелки камеры сгорания подают для сжигания газообразное низкокалорийное топливо типа продукта-газа или биогаза. На установившемся режиме работы конвертированного двигателя изменением расхода топлива устанавливают температуру продуктов сгорания газа в камере не выше 800 K. Уменьшают степень повышения полного давления компрессора до 3-4. Механическую энергию передают потребителю мощности через выводной вал двигателя с редуктором. Изобретение позволяет обеспечить эксплуатацию отработавших ресурс двигателей на низкокалорийных газообразных топливах из твердых бытовых отходов и биоотходов, улучшить экологию, уменьшить расходы на эксплуатацию установок и увеличить их ресурс. 2 з.п. ф-лы, 1 ил.

Изобретение относится к газотурбостроению, а конкретно к созданию работающих на низкокалорийных топливах газотурбинных установок (ГТУ) на основе конвертирования турбовальных авиационных двигателей.

Возрастающие темпы потребления топливно-энергетических ресурсов и сокращение запасов углеводородного топлива, особенно жидкого и газообразного, заставляет обратить внимание на более полное использование вторичных энергетических ресурсов, например таких как твердые бытовые (ТБО) и биоотходы, в результате термической переработки которых образуется горючий газ (продукт-газ, биогаз), который можно использовать в качестве топлива в газотурбинных установках. Продукт-газ, так же как и биогаз, имеет теплотворную способность на порядок меньшую, чем обычные углеводородные топлива, поэтому расход их в ГТУ той же мощности также на порядок больше, чем расход углеводородных топлив.

ГТУ для сжигания продукта-газа и биогаза желательно иметь их относительно недорогими и высоконадежными, чтобы они нашли массовое применение. Для этого целесообразно использовать отработавшие ресурс авиационные турбовальные двигатели и конвертировать их применительно к потребным условиям эксплуатации. Температура выхлопного газа ГТУ из условий экологии должна быть невысокой, к.п.д. установки из-за бросовой цены топлива большого значения не имеет, а мощность установки при заданной температуре газа желательно иметь максимально возможной.

Известно техническое решение по патенту РФ №2285139 (Способ обеспечения постоянной мощности силовой турбины конвертируемого в наземную установку авиационного газотурбинного двигателя). В конвертируемом авиационном двигателе поддержание постоянной мощности силовой турбины в процессе всей эксплуатации двигателя осуществляется за счет изменения расхода воздуха, достигаемого изменением поворотом лопаток соплового аппарата турбины привода компрессора, что требует серьезного изменения конструкции с ее несомненным удорожанием.

Известно техническое решение по патенту РФ №2499152 (Способ конвертирования двухконтурного турбореактивного двигателя в газотурбинный двигатель наземного применения). В двигателе второй контур закрывают, удаляют реактивное сопло и дополнительно устанавливают силовую турбину. При этом устанавливают дополнительно две ступени компрессора на выходе и одну ступень турбины. Это позволяет увеличить выходную мощность двигателя. Однако существенные изменения конструкции исходного двигателя резко повышают стоимость его конвертирования.

Наиболее близким аналогом, выбранным за прототип, является способ конвертирования двигателя НК-16СТ (см. Двигатель НК-16СТ. «Руководство по технической эксплуатации», книга 1, 1996 г., раздел 1, рис.1.2, стр.7/8). В двухконтурном двигателе заглушают второй контур и обрезают верхнюю часть лопаток ступеней вентилятора, изымают вторую ступень турбины второго контура, в камере сгорания заменяют форсуночную головку и устанавливают силовую газовую турбину. Это позволяет получить необходимые значения мощности и к.п.д. установки для привода газоперекачивающего агрегата ГПА-Ц-16/76. Однако при работе на низкокалорийном топливе (продукте-газе или биогазе) большая разница в величинах расхода воздуха в компрессоре и газа в турбине приведет к рассогласованию параметров турбины и компрессора, снижению к.п.д. и мощности, а возможно и срыву работы установки из-за помпажа в компрессоре.

В основу изобретения положено решение следующих задач:

- конвертирование отработавших ресурс авиационных турбовальных двигателей для работы на низкокалорийных газообразных топливах;

- использование твердых бытовых отходов и биоотходов;

- улучшение экологии окружающей среды;

- уменьшение затрат на создание и функционирование наземных газотурбинных установок;

- обеспечение выработки максимальной мощности при улучшении экологии окружающей среды (в том числе за счет уменьшения образования оксидов азота при работе конвертированной наземной ГТУ и согласование характеристик установки с характеристиками потребителей мощности) и увеличение ресурса конвертированной установки по сравнению с известными наземными ГТУ.

Поставленные задачи решаются тем, что способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку заключается в том, что для двигателя с многоступенчатым компрессором и турбиной горелки для работы на авиационном топливе в камере сгорания заменяют на горелки для работы на газообразном топливе, а мощность двигателя передают потребителю через выводной вал.

Согласно изобретению снабжают двигатель редуктором, который соединяют с выводным валом. Удаляют лопатки из проточной части последних ступеней компрессора с уменьшением степени повышения полного давления компрессора, устанавливая его в диапазоне значений от 3 до 4. Удаляют лопатки из проточной части первых ступеней турбины. Заменяют сопловой аппарат первой (из оставшихся) ступени конвертированной турбины на сопловой аппарат повышенной пропускной способности. При работе конвертированного двигателя на установившемся режиме с использованием газообразного низкокалорийного топлива регулируют его подачу из условия ограничения температуры продуктов сгорания газа в камере сгорания не выше 800 К.

Указанные существенные признаки обеспечивают решение поставленных задач, так как:

- конвертирование отработавших ресурс авиационных турбовальных двигателей для работы на низкокалорийных газообразных топливах позволяет уменьшить затраты на создание и эксплуатацию наземных ГТУ, улучшить экологию окружающей среды за счет уменьшения образования оксидов азота, сокращения площадей полигонов занятых хранилищами отходов;

- удаление части рабочих лопаток из последних ступеней компрессора и первых ступеней турбины, замена соплового аппарата первой (из оставшихся) ступени конвертированной турбины на сопловой аппарат повышенной пропускной способности позволяют простейшим путем (при минимальных затратах) обеспечить величину степени повышения полного давления компрессора, которая при температуре ТГ = 800 К (и том же расходе газа в турбине) позволяет обеспечить максимальную выработку мощности отдаваемой потребителю, а также понизить уровень температуры выхлопного газа до экологически приемлемого уровня с обеспечением практически полной безотказности работы горячих частей газовой турбины и повышения ресурса ГТУ;

- установка редуктора на выводном валу турбины позволяет оптимально согласовать частоты вращения турбины и потребителя мощности, например электрогенератора, насоса и других потребителей, обеспечив максимальную выработку энергии;

- если выводной вал двигателя вращают турбиной привода компрессора, то это позволяет конвертировать одновальные авиационные двигатели.

Существенные признаки изобретения по способу могут иметь развитие и дополнения:

- если в камере сгорания устанавливать многофорсуночные горелки со струйными форсунками, то это позволяет, за счет уменьшения толщины фронта горения, снизить уровень выброса оксидов азота и улучшить экологию окружающей среды;

- если удаляют не более 40% рабочих лопаток последних ступеней компрессора и не более 30% лопаток первых ступеней турбины, то это обеспечивает сохранение массового расхода газа через турбину с выработкой максимально возможной ее мощности при уменьшенных значениях параметров по Тг и πк.

Таким образом, решены поставленные в изобретении задачи:

- конвертирование отработавших ресурс авиационных турбовальных двигателей для работы на низкокалорийных газообразных топливах;

- использование газообразных твердых бытовых отходов и биоотходов;

- улучшение экологии окружающей среды;

- уменьшение затрат на создание и функционирование ГТУ;

- обеспечение выработки максимальной мощности при улучшении экологии окружающей среды (в том числе за счет уменьшения образования оксидов азота при работе конвертированной наземной ГТУ и согласования характеристик установки с характеристиками потребителей мощности) и увеличении ресурса конвертированной установки по сравнению с наземными газотурбинными установками.

При этом обеспечивается возможность использования продуктов термической переработки твердых бытовых и биоотходов для выработки механической и других видов энергии в конвертированных турбовальных авиационных двигателях, обладающих высокой надежностью, низкой стоимостью и улучшенной экологичностью. Уменьшены финансовые затраты на создание и функционирование ГТУ на основе конвертированных турбовальных авиационных двигателей за счет увеличения ресурса работы и снижения стоимости топлива. Обеспечивается максимальная выработка мощности, уменьшается образование оксидов азота при работе конвертированной наземной ГТУ, повышается ее ресурс. Имеется возможность согласования характеристик конвертированной ГТУ с характеристиками потребителей мощности.

Настоящее изобретение поясняется последующим описанием способа конвертирования турбовального двигателя в наземную газотурбинную установку.

На чертеже схематично изображен продольный разрез конвертированного турбовального двигателя.

Конвертируемый двигатель содержит (см. чертеж) многоступенчатый компрессор 1, многоступенчатую турбину 2, камеру сгорания 3 с горелками 4, выводной вал 5, потребитель мощности 6. Компрессор 1 входом соединен с атмосферой, а выходом через камеру сгорания 3 - с турбиной 2. Двигатель через выводной вал 5 соединен с потребителем мощности 6 через редуктор 7. В двигателе удалены лопатки 8, 9 из проточных частей соответственно первых ступеней турбины (не более 30%) и последних ступеней компрессора (не более 40%). Заменен сопловой аппарат 10 первой (из оставшихся) ступени конвертированной турбины на сопловой аппарат повышенной пропускной способности.

Способ конвертирования турбовального двигателя в наземную газотурбинную установку заключается в том, что выводной вал 5 соединяют через редуктор 7 с потребителем мощности 6. В камеру сгорания 3 через горелки 4 подают для сжигания газообразное низкокалорийное топливо. Горелки 4 могут быть выполнены многофорсуночными струйными. В многоступенчатом компрессоре 1 предварительно удаляют лопатки 9 из проточной части последних ступеней (не более 40%), чтобы обеспечить величину степени повышения полного давления компрессора в пределах 3-4. В многоступенчатой турбине 2 предварительно удаляют лопатки 8 из проточной части первых ступеней (не более 30%) и устанавливают сопловой аппарат 10 повышенной пропускной способности на первой ступени турбины для согласования параметров совместной работы турбины 2 и компрессора 1 (при температуре газа перед турбиной не выше 800 K) и обеспечения максимальной мощности установки.

В России имеется огромный парк выпущенных промышленностью турбовальных авиационных газотурбинных двигателей АИ-20, в том числе и используемых в виде АИ-20СТ в передвижных автоматизированных электростанциях ПАЭС-2500. Этот двигатель относится к первому поколению двигателей, спроектированных 60 лет назад. Он имеет температуру газа перед турбиной (с неохлаждаемыми лопатками) Т≈1000 K, низкую степень повышения полного давления - , простую конструкцию и невысокий, на сегодняшний день, к.п.д. - η=0.21-0.23. Это делает его дешевым, но малоконкурентным на рынке энергоустановок. Кроме того, достаточно большая для неохлаждаемых лопаток температура ограничивает ресурс турбины, следовательно, и ресурс двигателя.

При использовании двигателя с меньшей температурой газа перед турбиной Т=800 K максимальное значение полезной мощности (с учетом оптимальности параметров при данной температуре) можно обеспечить только если степень повышения полного давления компрессора понизить до уровня . Такой широкий диапазон значений компрессора позволяет уменьшить давление за ним только путем изъятия лопаток нескольких последних ступеней; например, в компрессоре двигателя АИ-20 следует удалить лопатки из проточной части четырех последних ступеней с тем, чтобы обеспечить заданный диапазон степени повышения полного давления .

Уменьшение давления за компрессором требует и уменьшения степени понижения давления для турбины путем изъятия лопаток из одной или нескольких ее первых ступеней. Это позволит увеличить пропускную способность турбины и согласовать ее работу с компрессором. Так, в турбине двигателя АИ-20 для этого следует удалить одну первую ступень и заменить сопловой аппарат второй ступени на сопловой аппарат повышенной пропускной способности.

Целесообразность конвертирования турбовального двигателя АИ-20 (или АИ-20СТ) в наземную газотурбинную установку, использующую низкокалорийные топлива, подтверждается результатами расчетов, в которых приняты значения:

- температура газа перед турбиной - 800 K;

- степень повышения полного давления компрессора - ;

- к.п.д. компрессора - 0.75;

- к.п.д. турбины - 0.80;

- коэффициент сохранения полного давления в тракте от компрессора до турбины - 0.91;

- расход газа через турбину - 20 кг/с;

- топливо: продукт-газ;

- низшая теплотворная способность топлива - 5123 кДж/кг.

Величины к.п.д. компрессора и турбины приняты на 0.05-0.08 меньшими для учета возможности некачественных доделок их проточной части.

При этом максимальная величина полезной мощности установки (компрессор и турбина которой имеют существенно заниженные значения к.п.д.), работающей на топливе низкой стоимости с относительно небольшой температурой газа перед турбиной, достигает 963 кВт при . При изменении значений уменьшение величины мощности относительно ее максимального значения не превышает 2.5%. Расширение границ указанного диапазона на 10% ниже или выше снижает мощность до 5-7%. Это подтверждает целесообразность принятия величины степени повышения полного давления компрессора при температуре газа перед турбиной Т=800 K. Следует особо отметить, что при заданной температуре газа перед турбиной в 800 K максимальный к.п.д. ГТУ достигается в диапазоне πк=3-4.

Изобретение может найти применение на предприятиях переработки твердых отходов, а также на станциях по утилизации канализационных стоков. В частности, на Курьяновской очистительной станции (КОС - г. Москва, Юго-Восточный округ) используется биогаз для работы поршневых двигателей. Это позволяет обеспечить электроэнергией до 40% потребностей КОС. Возможно применение модернизированной ПАЭС-2500 в дополнение к поршневым двигателям или взамен их, что позволит существенно уменьшить выбросы вредных веществ с выхлопными газами, в частности, оксидов азота.


СПОСОБ КОНВЕРТИРОВАНИЯ ТУРБОВАЛЬНОГО АВИАЦИОННОГО ДВИГАТЕЛЯ В НАЗЕМНУЮ ГАЗОТУРБИННУЮ УСТАНОВКУ
СПОСОБ КОНВЕРТИРОВАНИЯ ТУРБОВАЛЬНОГО АВИАЦИОННОГО ДВИГАТЕЛЯ В НАЗЕМНУЮ ГАЗОТУРБИННУЮ УСТАНОВКУ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 208.
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.351e

Устройство для формирования и испытания образцов тонких покрытий

Изобретение относится к лабораторной испытательной технике, а именно к устройству для формирования и испытания образца тонких покрытий в нагрузочных устройствах, например, для испытания тонких керамических теплозащитных покрытий на механическую прочность растяжением. Устройство представляет...
Тип: Изобретение
Номер охранного документа: 0002545082
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3df9

Система подачи жидкого кислорода и способ его подачи из бака потребителю

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы...
Тип: Изобретение
Номер охранного документа: 0002547353
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41f0

Способ определения адгезионной прочности теплозащитного покрытия на сдвиг и устройство для его осуществления

Изобретение относится к способу и устройству для определения адгезионной прочности теплозащитных покрытий для образцов. Для определения адгезионной прочности теплозащитного покрытия на сдвиг на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку...
Тип: Изобретение
Номер охранного документа: 0002548378
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.441b

Способ спектрометрического измерения средней температуры слоя газа заданной толщины

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины,...
Тип: Изобретение
Номер охранного документа: 0002548933
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4690

Способ определения температуры потока нагретого газа

Изобретение относится к области термометрии и предназначено для определения максимальных температур в камерах сгорания авиадвигателей различного назначения. Газодинамический насадок для определения температуры газа включает проточную камеру с входным и выходным патрубками и жиклерами в них....
Тип: Изобретение
Номер охранного документа: 0002549568
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4db8

Муфта газогенератора

Изобретение относится к области газотурбинных силовых установок легких и беспилотных летательных аппаратов, а именно к конструкции газогенераторов газотурбинных двигателей. Муфта газогенератора содержит средства для передачи крутящего момента и осевого сцепления между валами в виде...
Тип: Изобретение
Номер охранного документа: 0002551410
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.59db

Цифровая электронная система управления с встроенной полной термогазодинамической математической моделью газотурбинного двигателя и авиационный газотурбинный двигатель

Группа изобретений относится к области авиационных газотурбинных двигателей (ГТД). Технический результат заключается в повышении качества и надежности управления ГТД в реальной эксплуатации за счет встроенного в систему управления ГТД программного обеспечения «виртуальный двигатель»,...
Тип: Изобретение
Номер охранного документа: 0002554544
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6d68

Способ измерения параметров пульсирующего потока

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в лопаточных машинах и каналах, например в лопаточных компрессорах, трубопроводах и диффузорах в заданных областях течения, как в пограничных зонах, так и в ядре...
Тип: Изобретение
Номер охранного документа: 0002559566
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.7834

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя включает отбор охлаждающего воздуха из воздушной полости камеры сгорания, его транспортировку в аппарат закрутки, выполненный на статоре напротив диска турбины и последующий подвод охлаждающего воздуха из аппарата закрутки во...
Тип: Изобретение
Номер охранного документа: 0002562361
Дата охранного документа: 10.09.2015
Показаны записи 31-40 из 89.
20.02.2015
№216.013.2bbb

Гиперзвуковой прямоточный воздушно-реактивный двигатель

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему....
Тип: Изобретение
Номер охранного документа: 0002542652
Дата охранного документа: 20.02.2015
27.03.2015
№216.013.351e

Устройство для формирования и испытания образцов тонких покрытий

Изобретение относится к лабораторной испытательной технике, а именно к устройству для формирования и испытания образца тонких покрытий в нагрузочных устройствах, например, для испытания тонких керамических теплозащитных покрытий на механическую прочность растяжением. Устройство представляет...
Тип: Изобретение
Номер охранного документа: 0002545082
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3df9

Система подачи жидкого кислорода и способ его подачи из бака потребителю

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы...
Тип: Изобретение
Номер охранного документа: 0002547353
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.41f0

Способ определения адгезионной прочности теплозащитного покрытия на сдвиг и устройство для его осуществления

Изобретение относится к способу и устройству для определения адгезионной прочности теплозащитных покрытий для образцов. Для определения адгезионной прочности теплозащитного покрытия на сдвиг на подложку, выполненную в виде наружных поверхностей двух соосно установленных с поджатием по стыку...
Тип: Изобретение
Номер охранного документа: 0002548378
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.441b

Способ спектрометрического измерения средней температуры слоя газа заданной толщины

Изобретение относится к области дистанционного измерения высоких температур газов и может быть применено для экспериментальных исследований рабочего процесса силовых установок. Согласно заявленному способу при спектрометрическом измерении средней температуры слоя газа заданной толщины,...
Тип: Изобретение
Номер охранного документа: 0002548933
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4690

Способ определения температуры потока нагретого газа

Изобретение относится к области термометрии и предназначено для определения максимальных температур в камерах сгорания авиадвигателей различного назначения. Газодинамический насадок для определения температуры газа включает проточную камеру с входным и выходным патрубками и жиклерами в них....
Тип: Изобретение
Номер охранного документа: 0002549568
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4db8

Муфта газогенератора

Изобретение относится к области газотурбинных силовых установок легких и беспилотных летательных аппаратов, а именно к конструкции газогенераторов газотурбинных двигателей. Муфта газогенератора содержит средства для передачи крутящего момента и осевого сцепления между валами в виде...
Тип: Изобретение
Номер охранного документа: 0002551410
Дата охранного документа: 20.05.2015
27.06.2015
№216.013.59db

Цифровая электронная система управления с встроенной полной термогазодинамической математической моделью газотурбинного двигателя и авиационный газотурбинный двигатель

Группа изобретений относится к области авиационных газотурбинных двигателей (ГТД). Технический результат заключается в повышении качества и надежности управления ГТД в реальной эксплуатации за счет встроенного в систему управления ГТД программного обеспечения «виртуальный двигатель»,...
Тип: Изобретение
Номер охранного документа: 0002554544
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6d68

Способ измерения параметров пульсирующего потока

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в лопаточных машинах и каналах, например в лопаточных компрессорах, трубопроводах и диффузорах в заданных областях течения, как в пограничных зонах, так и в ядре...
Тип: Изобретение
Номер охранного документа: 0002559566
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.7834

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя

Способ охлаждения рабочей лопатки турбины газотурбинного двигателя включает отбор охлаждающего воздуха из воздушной полости камеры сгорания, его транспортировку в аппарат закрутки, выполненный на статоре напротив диска турбины и последующий подвод охлаждающего воздуха из аппарата закрутки во...
Тип: Изобретение
Номер охранного документа: 0002562361
Дата охранного документа: 10.09.2015
+ добавить свой РИД