×
10.04.2016
216.015.2c7d

Результат интеллектуальной деятельности: ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002579752
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к линейным ускорителям и может найти применение в качестве ускорителя элементарных микрочастиц, например молекул или атомов, лишенных заряда. Технический результат состоит в повышении концентрации микрочастиц на выходе, снижении расхода исследуемых образцов и, как следствие, повышении к.п.д. Ротор 1 установлен с возможностью вращения коаксиально с минимальным зазором внутри статора 2 и имеет вал 7 с повышенным диаметром, выступающий с одной стороны и снабженный односторонними подшипниками 8 и 9. Статор 2 расположен внутри неподвижной станины 10. Между станиной и статором с двух сторон установлены подшипники 11 и 12. Подшипниковые щиты 13 и 14 вставлены внутрь статора 2. Через ступицы 15 и 16 эти щиты сочленены с валом ротора 7 через подшипники соответственно 17 и 18. Щиты содержат окна, допускающие свободный проход испытательных образцов к зазору 19 между статором и ротором. Статор 2 механически сочленен с внешним приводом с помощью конической передачи 20 с валом 21 для внешнего привода. Вал 7 ротора 1 также сочленен с внешним приводом с помощью конической передачи 22 с валом 23 для привода. Приводы статора и ротора должны вращать соответственно статор и ротор в разные стороны и с одинаковой скоростью. Для вращения статора и ротора может быть применен один общий привод, передающий движение на оба вала с помощью редукторной коробки передач. 2 з.п. ф-лы, 7 ил.

Заявленное изобретение относится к ускорителям и может найти применение в качестве ускорителя элементарных микрочастиц, например молекул или атомов, лишенных заряда.

Известно устройство для ускорения микрочастиц, описанное в патенте RU №251718402, С2, опубл. 27.11.13

В известном устройстве ускоритель представляет собой стационарное магнитное поле, в качестве микрочастиц применены электрон-ионные сгустки, которые разгоняют за счет собственного электрического поля, загоняя эти сгустки в магнитную ловушку.

Недостаток известного устройства для ускорения микрочастиц заключается в том, что ускорять в нем можно только электрон-ионные сгустки в стационарном магнитном поле определенного типа. Само устройство имеет сложную конструкцию. Кроме того, скорость истечения микрочастиц на выходе ускорителя относительно невелика.

Наиболее близким к предлагаемому ускорителю и принятым за прототип является гравитационный ускоритель, описанный патенте RU 2327877 С1, опубл. 27.06.2008.

Известный ускоритель представляет собой коаксиально установленные с зазором относительно друг друга ротор и статор, на взаимообращенных поверхностях которых выполнены выступающие зубцы с винтовыми пазами с расходящимся от входного отверстия к выходному шагом, зубцы статора в поперечном разрезе выполнены в форме зубцов статора асинхронной машины с прямоугольными открытыми пазами, зубцы ротора в поперечном разрезе выполнены в форме зубцов якоря машины постоянного тока с прямоугольными открытыми пазами, число зубцов ротора равно числу зубцов статора, зазор между каждым из зубцов статора и ротора непрерывен от входного до выходного отверстий ускорителя, шаг винтовых пазов статора от входного отверстия до выходного приближен к бесконечности, винтовые пазы статора выполнены с противоположным по отношению к ротору направлением, ширина наружной поверхности зубцов выполнена в зависимости от угла α пересечения зубцов статора и ротора, ротор и статор выполнены вращающимися с одинаковой скоростью в разные стороны.

Известный ускоритель отличается простотой исполнения и обеспечивает возможность разгона нейтральных микрочастиц до высоких скоростей.

Его недостаток состоит в том, что концентрация частиц на выходе невелика, что затрудняет процесс их исследования.

Задачей данного изобретения является повышение концентрации микрочастиц на выходе, снижение расхода исследуемых образцов и, как следствие, повышение КПД ускорителя.

Техническим результатом является создание простых и удобных для применения в различных областях ускорителей, способных обеспечить высокую концентрацию нейтральных элементарных микрочастиц, например молекул или атомов.

Технический результат достигается за счет того, что в устройстве линейного гравитационного ускорителя нейтральных микрочастиц, состоящем из коаксиально установленных с зазором относительно друг друга ротора и статора, на взаимообращенных поверхностях которых выполнены выступающие зубцы с винтовыми пазами с расходящимся от входного отверстия к выходному шагом, зубцы статора в поперечном разрезе выполнены в форме зубцов статора асинхронной машины с прямоугольными открытыми пазами, зубцы ротора в поперечном разрезе выполнены в форме зубцов якоря машины постоянного тока с прямоугольными открытыми пазами, число зубцов ротора равно числу зубцов статора, зазор между каждым из зубцов статора и ротора непрерывен от входного до выходного отверстий ускорителя, шаг винтовых пазов статора от входного отверстия до выходного приближен к бесконечности, винтовые пазы статора выполнены с противоположным по отношению к ротору направлением, ширина наружной поверхности зубцов выполнена в зависимости от угла α пересечения зубцов статора и ротора, ротор и статор выполнены вращающимися с одинаковой скоростью в разные стороны согласно изобретению, ротор и статор выполнены так, что на входе ускорителя их диаметры больше, чем на выходе, а ширина зубцов в каждом поперечном сечении статора и ротора равна:

,

где bi - ширина зубца в i-м сечении, b3 - ширина зубца в основании ротора, di - диаметр ротора в i-м сечении, D - диаметр ротора в его основании, α - угол пересечения между зубцами статора и ротора в i-м сечении.

Ротор ускорителя может быть выполнен в виде прямого, кругового усеченного конуса, зазор в основании конуса является входным отверстием, шаг винтовых линий в суженной части ротора приближается к бесконечности,

Ротор может быть выполнен в виде половины двухполостного гиперболоида, сечения которого относительно оси симметрии являются окружностями, а выходное отверстие ротора и статора имеет вид горловой части гиперболоида.

Если ротор и статор выполняют так, что на входе ускорителя их диаметры больше, чем на выходе, то такая конструкция позволяет концентрировать нейтральные микрочастицы.

Если ширина зубцов в каждом поперечном сечении статора и ротора равна:

,

где bi - ширина зубца в i-м сечении, b3 - ширина зубца в основании ротора, di - диаметр ротора в i-м сечении, D - диаметр ротора в его основании, α - угол пересечения между зубцами статора и ротора в i-м сечении, то площадь взаимодействия микрочастиц и элементов ускорителя снижается, что обеспечивает процесс ускорения микрочастиц по мере их приближения к выходу ускорителя.

Выполнение ротора в виде прямого, кругового усеченного конуса, зазор в основании которого является входным отверстием, а шаг винтовых линий в суженной части ротора приближается к бесконечности позволяет фокусировать разгоняемые микрочастицы в строго определенной точке пространства, что облегчает процесс исследования.

Если ротор выполнен в виде двухполостного гиперболоида, сечения которого относительно оси симметрии являются окружностями, а выходное отверстие ротора и статора имеет вид горловой части гиперболоида, то на выходе ускорителя разогнанные микрочастицы буду двигаться почти параллельно оси ускорителя в виде окружности небольшого диаметра определенных размеров, что необходимо для бомбардировки некоторых мишеней.

Изобретение иллюстрируется 7-ю фигурами.

На фиг. 1 изображен поперечный разрез статора и ротора.

На фиг. 2 представлен ротор ускорителя, винтовые пазы которого имеют переменный шаг. Показан только один зубец.

На фиг. 3 нарисован продольный разрез статора, пазы которого имеют переменный шаг. Показан только один зубец.

На фиг. 4 показан продольный разрез ускорителя.

На фиг. 5 дан вид ускорителя со стороны стрелки в сечении по линии А-А (фиг. 4).

На фиг. 6 представлена принципиальная электрическая схема питания двигателя, приводящего во вращение статор ускорителя.

Фиг. 7 демонстрирует ротор, выполненный в виде половины двухполостного гиперболоида.

Гравитационный ускоритель устроен следующим образом.

Ротор 1 (фиг. 1) установлен внутри статора 2 и имеет зубцы 3, которые в профиль выполнены в форме зубцов якоря машины постоянного тока с углубленным открытым прямоугольным пазом (см. кн. Гольдберг О.Д. и др. Проектирование электрических машин - М.: Высшая школа, 1984 г., стр. 248). Между зубцами ротора 1 имеются прямоугольные открытые пазы 4, профиль которых выполнен в форме открытых прямоугольных пазов якоря машины постоянного тока (см. там же). Зубцы статора 5 в профиль выполнены в форме зубцов статора асинхронной машины с прямоугольным открытым пазом (см. кн. Гольдберг О.Д. и др. Проектирование электрических машин. - М.: Высшая школа, 1984 г., стр. 134). Между зубцами 5 статора 2 имеются открытые прямоугольные пазы 6 (прямые каналы), выполненные в форме пазов статора асинхронной машины с углубленными прямоугольными открытыми пазами (см. там же, стр. 134). Ширина наружной поверхности зубцов статора и ротора и ширина пазов в любом сечении выполнена одинаковой. Зубцы 3 ротора 1, так же как и зубцы статора, непрерывны, проходят вдоль всей поверхности ротора в продольном направлении. Ротор 1 выполнен в виде прямого, кругового усеченного конуса (фиг. 2) и на фиг. 2 показан только один зубец. Начальная часть конуса является его основанием. Зубцы 3 расположены по резьбе по винтовой линии с шагом, расходящимся от его начала к концу. Шаг винтовых линий в суженной части ротора приближается к бесконечности. Зубцы 5 статора 2 (фиг. 3), так же как и зубцы 3 ротора 1, в продольном направлении расположены по резьбе по винтовой линии в виде шнека или винта с переменным шагом, расходящимся от его начала к концу. (На фиг. показан только один виток). Причем направление винтовой линии резьбы статора взаимно противоположно направлению винтовой линии резьбы ротора. Шаг винтовых линий статора и количество витков его резьбы точно такое же, как и у ротора. Шаг резьбы винтовой линии в конце статора, в суженной его части так же как у ротора, приближается к бесконечности. Конструкция предусматривает многозаходный винт. Количество зубцов может достигать двузначного или даже трехзначного числа в зависимости от размеров машины. Ширина зубцов в каждом поперечном сечении статора и ротора принимается равной:

где bi - ширина зубца в i-м сечении, b3 - ширина зубца в основании конуса, di - диаметр конуса в i-м сечении, D - диаметр конуса в его основании, α - угол пересечения между зубцами статора и ротора в i-м сечении. И статор 2, и ротор 1 выполнены подвижными. Ротор 1 установлен с возможностью вращения коаксиально с минимальным зазором внутри статора 2 (фиг. 4) и имеет вал 7 с повышенным диаметром, выступающий с одной стороны и снабженный односторонними подшипниками 8 и 9. Статор 2 расположен внутри неподвижной станины 10. Между станиной и статором с двух сторон установлены подшипники 11 и 12. Статор 2 имеет подшипниковые щиты 13 и 14, которые вставлены внутрь статора. Через ступицы 15 и 16 эти щиты сочленены с валом ротора 7 через подшипники соответственно 17 и 18. Щиты содержат обширные окна (на фигуре не показаны), допускающие свободный проход испытательных образцов к зазору 19 между статором и ротором. Статор 2 механически сочленен с внешним приводом (на фигуре не показан) с помощью конической передачи 20 с валом 21 для внешнего привода. Вал 7 ротора 1 также сочленен с внешним приводом (на фиг. не показан) с помощью конической передачи 22 с валом 23 для привода. Приводы статора и ротора должны вращать соответственно статор и ротор в разные стороны и с одинаковой скоростью. При этом для вращения статора и ротора может быть применен один общий привод, передающий движение на оба вала с помощью редукторной коробки передач. Вращение ротора и статора должно происходить в разные стороны и с одинаковой скоростью.

Фиг. 5 дает представление о виде ускорителя со стороны стрелки в сечении по линии А-А (фиг. 4), где показаны неподвижная станина 10, подшипники 11, 12 между станиной 10 и подвижным статором 2, подшипниковый щит 14 со ступицей 15 и соединители между ступицей и ободом, выполненными в виде лучей 24. На фигуре видны также подшипники 8, 9, окна 25, зазор 19 и вал 7 ротора 1 и обод 26, расположенный между зазором 19 и лучами 24.

Вращение статора ускорителя от вала 21 осуществляется с помощью асинхронного короткозамкнутого двигателя 27 (фиг. 6), получающего питание от частотного регулятора 28. Последний подключен к источнику постоянного тока. Аналогично производится и вращение ротора 1 ускорителя от вала 23.

В варианте технического решения ротор выполнен в виде половины двухполостного гиперболоида (фиг. 7), сечения которого плоскостями, перпендикулярными относительно оси симметрии, являются окружностями, а выходная поверхность 27 имеет вид горловой части гиперболоида. Статор (на фиг. не показан) должен иметь соответствующую форму, а между статором и ротором по всей поверхности должен быть минимальный зазор. Все остальные элементы конструкции аналогичны фиг. 4. Вид со стороны входной части гиперболоидной конструкции аналогичен фиг. 5. Электропитание для привода статора и ротора выполнено аналогично фиг. 6.

Гравитационный ускоритель действует следующим образом. При вращении ротора 1 внутри подвижного статора 2 (фиг. 4, 5) исследуемые образцы (жидкость или газ) поступают во входные окна 25 и проходят в зазоры, образованные пазами статора 2 и ротора 4. Локальные зазоры, сформированные между зубцами статора и ротора, будут при вращении статора и ротора линейно и непрерывно с ускорением смещаться в сторону от начала статора и ротора к их концам в суженой части. При этом движение микрочастиц будет формироваться двумя силами. Первая сила образуется за счет шнекового эффекта, при которой частицы, оказавшиеся в пазах, будут двигаться вдоль пазов. Вторая сила образуется за счет того, что частицы благодаря центробежным силам попадают в зазор между зубцами ротора и статора в зоны взаимного пересечения зубцов и оказываются в гравитационной ловушке. Иными словами, микрочастицы образцов, попадающие в зазор 7 между зубцами, взаимодействуют с зубцами по принципу взаимного притяжения согласно формуле:

где m1 - массы элементов исследуемого материала и m2 - массы ротора и статора, которые взаимодействуют с частицами с силой Fi; R - расстояние между массами ротора и статора и микрочастицами, γ1=6,67384(80)·10-11 м3·с-2·кг-1, или Н·м2·кг-2 - универсальная постоянная. Что касается расстояния R, то в предлагаемом ускорителе эта величина неопределенна, поскольку элементы материала находятся во взаимодействии с двумя движущимися параллельно массами, расположенными с двух сторон от микрочастиц, и это расстояние на практике может приближаться к нулю. Во всяком случае, R в сотни и тысячи раз меньше, чем если бы взаимодействие было односторонним.

Площадь зазора между зубцами статора и ротора зависит от угла «α» взаимного пересечения зубцов статора и ротора и диаметра конусного ротора согласно формуле (1). Максимальные размеры этой площади на входе в ускоритель, где она равна b32 при α=90°. По мере перемещения микрочастиц эта площадь постоянно снижается, что приводит к увеличению их концентрации на выходе ускорителя, и будет иметь вид ромба.

Если шаг винтовых пазов статора и ротора на выходе приближен к бесконечности, то скорость истечения микрочастиц будет соразмерна релятивистской скорости, при этом масса частиц будет определяться согласно формуле:

где m0 - масса частиц на входе ускорителя, m - масса ускоренной частицы, V - скорость ускоренной частицы, с - скорость света.

Согласно формуле 3 взаимодействие между частицами и зубцами ротора и статора по мере их ускорения и приближения к выходному отверстию ускорителя будет усиливаться.

Фокус ускорителя будет находиться в вершине конуса, что облегчает выбор места установки мишени, на которую будут направляться микрочастицы.

Скорость V можно регулировать путем изменения числа оборотов статора и ротора. При этом сама скорость вращения статора и ротора может быть относительно невелика, что позволит снизить шум и вибрацию. Скорость V движения микрочастиц на выходе двигателя определяется скоростью вращения ротора и выходным шагом винтовой поверхности согласно соотношению V=Pn, где P - шаг винта, n - число оборотов вала ротора.

В варианте технического решения, когда ротор выполнен в виде половины двухполостного гиперболоида (фиг. 7), линейный ускоритель действует по тому же принципу, что и при конусном исполнении ротора. Разница лишь в том, что форма пятна на выходе ускорителя, образованная ускоренными микрочастицами, будет иметь вид кольца, размеры которого определяются диаметром горловины.

В настоящее время многочисленные малые ускорители применяются в медицине (пучками элементарных частиц), а также в промышленности (например, для имплантации инородных материалов в полупроводниках). Таким образом, предлагаемый гравитационный ускоритель может найти самое широкое применение в различных областях науки и техники.


ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ
ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ
ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ
ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ
ГРАВИТАЦИОННЫЙ УСКОРИТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 281.
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d0f

Способ измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656016
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5edf

Способ и система выполнения распределенных операций счета и суммирования чисел с применением аналого-цифровых преобразователей уровня оптических сигналов

Изобретение относится к средствам выполнения поиска и обработки информации. Технический результат заключается в повышении скорости распределенных операций счета и суммирования чисел в компьютерных кластерах. Способ выполнения распределенных операций счета и суммирования чисел характеризуется...
Тип: Изобретение
Номер охранного документа: 0002656738
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f03

Способ организации взаимодействия клиента с сервером приложений с использованием сервис-браузера

Изобретение относится к вычислительной технике, в частности к средствам обмена данными между клиентом и сервером. Техническим результатом предложения является повышение скорости обработки информации при функционировании в защищенной среде. Способ организации взаимодействия клиента по крайней...
Тип: Изобретение
Номер охранного документа: 0002656735
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f43

Способ и система выполнения распределенного аналого-цифрового суммирования и управления его выполнением

Группа изобретений относится к области вычислительной техники и может быть использована в устройствах, выполняющих операции суммирования сигналов, одновременно генерируемых многими источниками. Техническим результатом является повышение скорости распределенных операций суммирования чисел в...
Тип: Изобретение
Номер охранного документа: 0002656741
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60eb

Способ внутрипластового горения

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют...
Тип: Изобретение
Номер охранного документа: 0002657036
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.64b1

Способ измерения параметров движения объекта и система для его осуществления

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих угловых и линейных ускорений объекта. Способ измерений параметров движения объекта с инерциальной измерительной системой, характеризующийся расположением 9...
Тип: Изобретение
Номер охранного документа: 0002658124
Дата охранного документа: 19.06.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
Показаны записи 191-200 из 202.
19.04.2019
№219.017.3208

Устройство защиты электроустановок от перегрева

Изобретение относится к электротехнике, а именно к устройствам защиты различных потребителей электроэнергии от тепловой перегрузки при повышенных токах или повышении температуры защищаемого корпуса изделия. Технический результат - обеспечение защиты различных потребителей электроэнергии от...
Тип: Изобретение
Номер охранного документа: 0002456730
Дата охранного документа: 20.07.2012
19.04.2019
№219.017.320d

Способ защиты электроустановок от перегрева

Изобретение относится к электротехнике, а именно к способам защиты потребителей электроэнергии от тепловой перегрузки. Технический результат - обеспечение защиты потребителей электроэнергии от тепловой перегрузки без разрыва контактов в цепи управления В устройстве, демонстрирующем предложенный...
Тип: Изобретение
Номер охранного документа: 0002456731
Дата охранного документа: 20.07.2012
29.04.2019
№219.017.42ae

Способ передачи электрической энергии в трехфазной системе на расстояние

Использование: в электроэнергетике для передачи больших потоков энергии на большие расстояния. Технический результат заключается в повышении КПД передачи и уменьшении полосы отчуждения. В начале линии в цепи фазы А формируют линию задержки со сдвигом сигнала во времени, равным 2/3f, в начале...
Тип: Изобретение
Номер охранного документа: 0002307438
Дата охранного документа: 27.09.2007
29.04.2019
№219.017.44bb

Гидравлический вариатор с высоким передаточным числом

Изобретение относится к объемным гидравлическим передачам вращательного движения и может быть использовано, в частности, в коробках перемены передач в транспортных системах. Гидравлический вариатор состоит из гидронасоса и гидродвигателя. Гидронасос имеет всасывающий (1) и нагнетательный (2)...
Тип: Изобретение
Номер охранного документа: 0002451851
Дата охранного документа: 27.05.2012
20.05.2019
№219.017.5d34

Привязной аэростат

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат...
Тип: Изобретение
Номер охранного документа: 0002688115
Дата охранного документа: 17.05.2019
09.06.2019
№219.017.79eb

Способ извлечения пакера

Изобретение относится к нефтегазодобывающей промышленности, а именно к извлечению эксплуатационных пакеров из газовых и газоконденсатных скважин со сложным многопрофильным стволом, в том числе и с наклонно-направленным. Способ включает спуск во внутреннюю полость лифтовой колонны инструмента...
Тип: Изобретение
Номер охранного документа: 0002311523
Дата охранного документа: 27.11.2007
29.06.2019
№219.017.9f64

Способ образования волн движущих сил в колесном транспортном средстве и универсальный колесный вездеход, его реализующий

Изобретения относятся к способу образования волн движущих сил в колесном транспортном средстве и к универсальному колесному вездеходу. Способ заключается в формировании не менее четырех колесных пар, последовательно расположенных на расстоянии L друг от друга. Волны движущих сил образуют путем...
Тип: Изобретение
Номер охранного документа: 0002425774
Дата охранного документа: 10.08.2011
10.07.2019
№219.017.ad00

Устройство для преобразования тепловой энергии в электрическую энергию

Устройство предназначено для прямого преобразования тепловой энергии в электрическую энергию. Устройство содержит генератор электрической энергии и нагреваемые элементы, выполненные из магнитно-мягкого материала с пониженной точкой Кюри и являющиеся составной частью Ф-образной магнитной цепи,...
Тип: Изобретение
Номер охранного документа: 0002382479
Дата охранного документа: 20.02.2010
10.07.2019
№219.017.af9c

Индукторный генератор с торцевым возбуждением

Изобретение относится к области электротехники, а именно к индукторным генераторам, и может быть использовано для выработки электрической энергии при вращении ротора, в частности для получения постоянного, однофазного и трехфазного переменного тока нормальной и повышенной частоты. Технический...
Тип: Изобретение
Номер охранного документа: 0002454775
Дата охранного документа: 27.06.2012
13.07.2019
№219.017.b3e5

Способ преобразования кинетической энергии ветра

Изобретение относится к области энергетики и касается преобразования энергии ветра в другие виды энергии. Способ преобразования кинетической энергии ветра, воздействующего на привязной летающий аппарат, с передачей механической мощности на рабочий орган, расположенный на земле, заключается в...
Тип: Изобретение
Номер охранного документа: 0002379545
Дата охранного документа: 20.01.2010
+ добавить свой РИД