×
10.04.2016
216.015.2c76

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЯ С НАПРАВЛЕННОЙ КОМПОЗИЦИОННОЙ СТРУКТУРОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к литейному производству. Шихтовую заготовку размещают в керамической форме или тигле, помещают в нижнюю область зоны нагрева двухзонной печи подогрева форм и нагревают в атмосфере инертного газа. При достижении расплавом температуры на 160-250°С выше температуры солидус его выдерживают в атмосфере инертного газа в течение 10-30 мин. В зону охлаждения двухзонной печи подогрева форм керамическую форму или тигель перемещают со скоростью 1-30 мм/мин. Обеспечивается однородная направленная композиционная структура отливок из сплава на основе ниобия, повышение выхода годного. 5 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к литейному производству, а именно к получению отливок из сплавов на основе ниобия методом направленной кристаллизации. Изобретение может быть использовано при изготовлении жаропрочных деталей газотурбинных двигателей: рабочих и сопловых лопаток, элементов жаровых труб, а также деталей других машин, работающих при температурах до 1500°С.

Прогресс в области повышения мощности, экономичности, экологичности современных газовых турбин, используемых в качестве авиационных двигателей, энергетических установок и газоперекачивающих агрегатов, во многом зависит от повышения температуры рабочего газа на входе в турбину. Для этого необходимо повысить предельные рабочие температуры, при которых возможна эффективная эксплуатация деталей горячего тракта, до 1500°С. Поскольку такие температуры лежат за пределами работоспособности современных сложнолегированных жаропрочных сплавов на основе никеля, существует целесообразность переходить на новые материалы с более жаропрочной матрицей. Наиболее перспективными в этом отношении являются естественные композиты на основе направленных эвтектик в виде ниобиевой матрицы, упрочненной силицидами ниобия. К преимуществам этих материалов относится меньшая на 20% плотность по сравнению с традиционно применяемыми жаропрочными сплавами, отсутствие дорогостоящих дефицитных легирующих элементов и более высокие температуры плавления. Лопатки из подобного естественно-композиционного материала могут длительно работать при температурах примерно на 200°С больших, нежели при которых могут работать аналогичные детали из использующихся в настоящее время никелевых жаропрочных сплавов.

Известен способ получения композиционных материалов на основе интерметаллида ниобия, заключающийся в дуговом переплаве в защитной атмосфере аргона в водоохлаждаемом медном тигле с использованием нерасходуемого вольфрамового электрода. Полученный слиток переплавляют несколько раз (R. Tanaka, A. Kasama, M. Fujikura, I. Iwanaga, N. Tanaka, and Y. Matsumura «Research and Development of Niobium-Based Superalloys for Hot Components of Gas turbine» Proceedings of the International Gas Turbine Congress, Tokyo, 2003).

Недостаток этого способа заключается в том, что в процессе кристаллизации формируется неоднородная структура, а детали из полученного материала получают механической обработкой полученного слитка, что чрезвычайно дорого и трудоемко.

Известен способ получения композиционного материала на основе ниобиевой матрицы и силицидов ниобия является направленная кристаллизация по методу Бриджмена, при котором процесс затвердевания осуществляется в индукционном сегментированном водоохлаждаемом медном тигле, при этом можно получать слитки диаметром до 50 мм (B.P. Bewlay, M.R. Jackson, M.F.X. Gigliotti «Chapter 26. Niobium Silicide High Temperature In Situ Composites» Intermetallic Compounds - Principles and Practice, Volume 3, Progress, Flasher and J.H. Westbrook, esd.: John Wiley, Chapter 26, p. 541-548, 2001).

Данный способ литья технологически сложен, оборудование для его реализации - дорогостоящее, а детали можно получать только при помощи механической обработки, что дорогостояще и технологически сложно.

Наиболее близким аналогом предложенного является способ получения композиционного материала на основе эвтектического состава в виде ниобиевой матрицы и силицидов ниобия, включающий нагрев в однозонной печи с индукционным нагревом, внутри которой помещается заготовка сплава в тигле из окиси ZrO2. После полного расплавления образца ниобиевого композита тигель перемещали вниз и выводили из индуктора со скоростью 3-9 мм/мин, таким образом осуществляя процесс направленной кристаллизации (М.И. Карпов, В.И. Внуков, В.П. Коржов, Т.С. Строганова, И.С. Желтякова, Д.В.Прохоров, И.Б. Гнесин, В.М. Кийко, Ю.Р.Колобов, Е.В. Голосов, А.Н. Некрасов «Структура и механические свойства жаропрочного сплава системы Nb-Si эвтектического состава, полученного методами направленной кристаллизации». Деформация и разрушение материалов, №12, с. 2-8, 2012).

Недостатком способа-прототипа является то, что получение заготовок образцов реализуется в однозонной печи с индукционным нагревом тигля из ZrO2 с шихтовой заготовкой, при этом отвод тепла в процессе кристаллизации происходит за счет излучения с поверхности тигля при перемещении его вниз. Однозонная печь с индукционным нагревом не обеспечивает однородного подогрева шихтовой заготовки. Охлаждение осуществляется тепловым излучением поверхности тигля, что не эффективно и обуславливает малый температурный градиент на фронте роста, непостоянные условия кристаллизации, а полученные отливки имеют значительную разницу в структуре по длине слитка. Вследствие этого исследования проводят на образцах малого размера (2×3×25 мм), что повышает стоимость материала, снижает выход годного, не дает возможности получать заготовки образцов необходимого размера, а также опытные детали газотурбинного двигателя.

Техническим результатом предложенного изобретения является получение деталей из сплава на основе ниобия с однородной направленной композиционной структурой и с высоким выходом годного.

Для достижения технического результата предложен способ получения детали из сплава на основе ниобия, включающий размещение шихтовой заготовки в керамической форме в зоне нагрева печи подогрева форм и повышение температуры в зоне нагрева до получения расплава, при этом керамическую форму размещают в нижней области зоны нагрева двухзонной печи подогрева форм, повышение температуры в зоне нагрева осуществляют до температуры на 160-250°С выше температуры солидус указанного сплава в атмосфере инертного газа, выдерживают полученный расплав в атмосфере инертного газа и перемещают керамическую форму в зону охлаждения со скоростью 1-30 мм/мин.

Предпочтительно, чтобы температура в зоне охлаждения составляла 250-350°С.

Полученный расплав лучше выдержать в атмосфере инертного газа в течение 10-30 минут.

Также его лучше выдержать в атмосфере инертного газа с давлением 0,05-0,5 атм.

После перемещения в зону охлаждения керамическую форму можно переместить обратно в зону нагрева и повторно выдержать в ней с последующим охлаждением.

Повторную выдержку керамической формы лучше осуществлять при температуре 1000-1300°С не менее 10 минут.

Предложенный способ может быть осуществлен с помощью двухзонной печи подогрева форм, изображенной на чертеже.

На чертеже отмечены следующие элементы:

1 - шток,

2 - корпус печи подогрева форм,

3 - керамическая форма,

4 - шихтовая заготовка,

5 - верхний нагреватель,

6 - нижний нагреватель,

7 - тепловые экраны,

8 - подвеска,

9 - верхняя область зоны нагрева,

10 - нижняя область зоны нагрева,

11 - зона охлаждения (ванна с жидкометаллическим охладителем).

Предложенный способ осуществляется следующим образом.

После размещения в керамической форме 3 шихтовой заготовки 4 форму при помощи подвески 8 закрепляют на штоке 1 и опускают в печь подогрева форм, а именно в нижнюю область зоны нагрева 10 двухзонной печи подогрева форм. Указанная область в зависимости от размеров нагревателей расположена либо на уровне нижнего нагревателя, либо на уровне нижнего и нижней части верхнего нагревателей. Далее при помощи верхнего 5 и нижнего 6 нагревателей (например, цилиндрической формы), расположенных в зоне нагрева, осуществляют повышение температуры в зоне нагрева в атмосфере инертного газа до температуры на 160-250°С выше температуры солидус расплавляемого сплава и выдерживают полученный расплав в атмосфере инертного газа. После выдержки расплава керамическую форму вертикально перемещают вдоль нагревателей 5 и 6 и опускают в зону охлаждения 11, которая может представлять собой ванну с жидкометаллическим охладителем, со скоростью 1-30 мм/мин.

Размещение керамической формы в нижней области зоны нагрева двухзонной печи подогрева форм обеспечивает равномерный подогрев шихтовой заготовки. В случае использования однозонной печи (с одним нагревателем) температура в области средней части нагревателя будет выше температуры в области верхней и нижней части нагревателя. В двухзонной печи наличие нижнего нагревателя компенсирует более низкую температуру в нижней области зоны нагрева, и таким образом падение температуры наблюдается только в верхней области зоны нагрева, что не препятствует процессу направленной кристаллизации. Следовательно, размещение керамической формы с шихтовой заготовкой в нижней области зоны нагрева двухзонной печи приводит к более равномерному ее подогреву. Процесс направленной кристаллизации слитка в керамической форме, размещенной ниже уровня нагревателя, увеличивает зону слитка с некомпозиционной структурой, а выше уровня нагревателя - усложняет процесс и увеличивает время кристаллизации.

Повышение температуры в зоне нагрева до температуры на 160-250°С выше температуры солидус сплава, из которого изготавливается деталь, одновременно обеспечивает необходимые условия для последующей кристаллизации сплава на основе ниобия и вместе с тем исключает разрушение керамической формы.

Выдержка полученного расплава в атмосфере инертного газа исключает физико-химическое взаимодействие расплава ниобиевого композита с керамической формой. При этом выдержка менее 10 минут может быть недостаточна для расплавления шихтовой ниобиевой заготовки, а выдержка более 30 минут технологически нецелесообразна, поскольку увеличивается вероятность разрушения керамических материалов.

При этом давление инертного газа 0,05-0,5 атм является предпочтительным, поскольку при меньших давлениях может начаться процесс физико-химического взаимодействия материала керамической формы с расплавом ниобиевого композита, а большее давление технологически нецелесообразно.

Последующее перемещение керамической формы в зону охлаждения со скоростью 1-30 мм/мин обеспечивает получение отливки с однородной, ориентированной вдоль оси образцов структурой естественного композита.

При меньшей температуре в зоне охлаждения, нежели 250°С, существует вероятность разрушения керамической формы, при этом наивысшее качество направленной структуры отливки наблюдается при температурах ниже 350°С. Следовательно, рекомендуемая температура в зоне охлаждения находится в диапазоне от 250 до 350°С.

После охлаждения керамическую форму можно переместить обратно в зону нагрева и повторно выдержать в ней с последующим охлаждением. Это нужно для снятия термических напряжений в полученной отливке и конструкции подвески, удерживающей керамическую форму.

Температуры ниже 1000°С и времени выдержки менее 10 минут недостаточно для снятия термических напряжений, а выдержка при температуре выше 1300°С технологически нецелесообразна из-за возможности возникновения неконтролируемых структурных изменений в отливке.

Примеры осуществления

Пример 1.

Для получения отливок из сплава на основе ниобия с направленной композиционной структурой использовали сплав следующего химического состава, мас. %: 57,5Nb-5,96Si-15,5Ti-19Hf-1,4Cr-0,7Al. Заготовку образца в форме из тугоплавкой керамики, закрепленной в подвеске на штоке, поместили в двухзонную печь подогрева форм, имеющую тепловые экраны, отделяющие зону нагрева от зоны охлаждения, на уровне нижнего нагревателя. В качестве нагревателей использовали графитовые нагреватели цилиндрической формы. Далее осуществляли нагрев до температуры на 160°С выше температуры солидус сплава и выдерживали полученный расплав в атмосфере аргона при давлении 0,05 атм в течение 30 минут. После этого начали перемещать подвеску из зоны нагрева в зону охлаждения с температурой 350°С со скоростью 1 мм/мин. По окончании кристаллизации тигель снова переместили в нагреватель и выдержали при температуре 1300°С в течение 10 минут. Далее охладили отливку до комнатной температуры вместе с печью. Полученная заготовка образца имела однородную регулярную структуру естественного композита, состоящего из чередующихся слоев ниобиевой матрицы и силицида ниобия с выходом годного по структуре на ~ 90% по высоте образца, притом как выход годного при изготовлении изделий по способу-прототипу составляет максимум 50% по высоте образца.

Пример 2.

Для получения отливок из сплава на основе ниобия с направленной композиционной структурой использовали сплав химического состава (вес. %): 57,5Nb-5,96Si-15,5Ti-19Hf-1,4Cr-0,7Al. Керамическую форму из тугоплавкой керамики с шихтовой заготовкой, закрепленную в подвеске на штоке, поместили в двухзонную печь подогрева форм, имеющую тепловые экраны, отделяющие зону нагрева от зоны охлаждения, на уровне нижнего нагревателя. В качестве нагревателей использовали графитовые нагреватели цилиндрической формы. Далее осуществляли нагрев до температуры на 250°С выше температуры солидус сплава. Выдерживали полученный расплав в течение 10 минут в атмосфере аргона при давлении 0,5 атм. После этого перемещали подвеску из зоны нагрева в зону охлаждения с температурой 250°С со скоростью 30 мм/мин. По окончании кристаллизации форму переместили в нагреватель, выдержали при температуре 1000°С в течение 10 минут и охладили до комнатной температуры вместе с печью. Полученная отливка детали ГТД имела однородную регулярную структуру естественного композита, состоящего из чередующихся слоев ниобиевой матрицы и силицида ниобия по всей высоте детали.

Пример 3.

Для получения отливок из сплава на основе ниобия с направленной композиционной структурой использовали сплав химического состава (вес. %): 57,5Nb-5,96Si-15,5Ti-19Hf-1,4Cr-0,7Al. Заготовку образца в форме из тугоплавкой керамики, закрепленной в подвеске на штоке, помещали в двухзонную печь подогрева форм, имеющую тепловые экраны, отделяющие зону нагрева от зоны охлаждения, и устанавливали в нижней части зоны нагрева. В качестве нагревателей использовали графитовые нагреватели цилиндрической формы. Далее осуществляли нагрев до температуры на 200°С выше температуры солидус сплава, выдерживали 20 минут в атмосфере аргона при давлении 0,3 атм. Далее перемещали подвеску из зоны нагрева в зону охлаждения с температурой 300°С со скоростью 10 мм/мин. После кристаллизации форму переместили в нагреватель, выдержали при температуре 1200°С в течение 15 мин и охладили до комнатной температуры вместе с печью. Полученная заготовка образца имела однородную регулярную структуру естественного композита, состоящего из чередующихся слоев ниобиевой матрицы и силицида ниобия с выходом годного по структуре на ~90% по высоте образца.

Таким образом, предложенный способ позволяет получать из сплава на основе ниобия образцы и детали с однородной регулярной структурой по высоте слитка, а также с высоким выходом годного.


СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛЕЙ ИЗ ЖАРОПРОЧНОГО СПЛАВА НА ОСНОВЕ НИОБИЯ С НАПРАВЛЕННОЙ КОМПОЗИЦИОННОЙ СТРУКТУРОЙ
Источник поступления информации: Роспатент

Показаны записи 321-330 из 368.
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.5991

Способ определения остаточных напряжений в изделиях из монокристаллических материалов рентгеновским методом

Использование: для определения остаточных напряжений в изделиях из монокристаллических материалов рентгеновским методом. Сущность заключается в том, что на поверхности контролируемого изделия выбирают направление, в котором будут определять остаточные напряжения, и кристаллографические...
Тип: Изобретение
Номер охранного документа: 0002427826
Дата охранного документа: 27.08.2011
18.05.2019
№219.017.5aa5

Способ модифицирования наносиликатов

Изобретение относится к способам модифицирования слоистых наносиликатов, предназначенных для изготовления полимерных нанокомпозитов. Способ модифицирования включает диспергирование смектитовой глины в 1М водном растворе натриевой соли, отделение примесей, обработку полученного продукта...
Тип: Изобретение
Номер охранного документа: 0002433954
Дата охранного документа: 20.11.2011
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5c9e

Полимерный композиционный материал с интегрированным вибропоглощающим слоем

Изобретение относится к слоистым полимерным композиционным материалам (ПКМ) с повышенными вибропоглощающими свойствами и может быть использовано для снижения вибрации и структурного шума в малонагруженных элементах конструкции изделий авиационной техники. Полимерный композиционный материал с...
Тип: Изобретение
Номер охранного документа: 0002687938
Дата охранного документа: 16.05.2019
31.05.2019
№219.017.7045

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам, армированным гомогенно диспергированными нитевидными кристаллами карбида кремния, и может быть использовано при изготовлении теплонагруженных узлов и деталей перспективных газотурбинных двигателей, работающих при температурах до...
Тип: Изобретение
Номер охранного документа: 0002689947
Дата охранного документа: 29.05.2019
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
Показаны записи 321-330 из 335.
12.08.2019
№219.017.be7c

Способ производства литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на основе никеля для изготовления лопаток и других деталей горячего тракта газотурбинных двигателей и установок. Способ производства литейных жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002696999
Дата охранного документа: 08.08.2019
12.08.2019
№219.017.bf1f

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству безуглеродистых литейных жаропрочных сплавов на основе никеля, и может быть использовано при производстве заготовок для литья изделий, преимущественно монокристаллических рабочих лопаток газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002696625
Дата охранного документа: 06.08.2019
02.10.2019
№219.017.cea0

Керамический композиционный материал и изделие, выполненное из него

Группа изобретений относится к области керамических композиционных материалов, предназначенных для изготовления теплонагруженных узлов и деталей с рабочей температурой до 1500°С в атмосфере воздуха и продуктах сгорания топлива. Предложен керамический композиционный материал, содержащий, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002700428
Дата охранного документа: 17.09.2019
05.10.2019
№219.017.d2bc

3d-принтер для печати изделий, состоящих из различных по электрофизическим свойствам материалов

Изобретение относится к радиотехнике, в частности к конструкции 3D-принтеров на основе метода SLS. Цель изобретения - расширение диапазона печатаемых изделий за счет применения нескольких типов частиц порошкообразного материала с различными электрофизическими свойствами для поэтапного...
Тип: Изобретение
Номер охранного документа: 0002702019
Дата охранного документа: 03.10.2019
15.01.2020
№220.017.f4f5

Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов, и может быть использовано при изготовлении лопаток газотурбинных двигателей, длительно работающих при температурах до 1200°С. Жаропрочный сплав на основе никеля содержит, мас. %: хром 1,3-3,3, кобальт...
Тип: Изобретение
Номер охранного документа: 0002710759
Дата охранного документа: 13.01.2020
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
+ добавить свой РИД