×
10.04.2016
216.015.2b80

Результат интеллектуальной деятельности: КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы. Квантрон снабжен световодами, расположенными параллельно оси активного элемента, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках. В качестве элементов термостабилизации используются нагреватели и элементы охлаждения. Технический результат заключается в обеспечении возможности упрощения системы охлаждения активного элемента. 2 ил.
Основные результаты: Квантрон твердотельного лазера с термостабилизацией диодной накачки, содержащий размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, отличающийся тем, что снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения, и может быть использовано при изготовлении лазерной техники.

Известна оптическая усилительная головка (ОУГ) с диодной накачкой, состоящая из размещенных в корпусе в виде многогранника: активного элемента (АЭ) в виде стержня, элементов диодной накачки, расположенных вдоль активного элемента, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала, и каналы, расположенные в корпусе. Элементы диодной накачки выполнены в виде блоков линеек лазерных диодов и расположены под углом 90° к оси активного элемента на держателях. В элементах диодной накачки расположены каналы для охлаждающей жидкости. Устройство снабжено демпфирующими элементами, установленными на обоих торцах трубки, в качестве демпфирующих элементов использованы прокладки (патент США №6101208, H01S 3/0941, 1997 г.).

В этом устройстве охлаждение АЭ и элементов диодной накачки происходит за счет высокой скорости потока охлаждающей жидкости. Поддержание постоянной температуры теплоносителя позволяет обеспечить работоспособность и высокую эффективность оптической усилительной головки.

Однако неравномерное и неполное заполнение излучением накачки АЭ приводит к увеличению термомеханических напряжений внутри АЭ, что может привести к его выходу из строя. Неравномерность освещения АЭ приводит также к снижению эффективности накачки и качества выходного лазерного пучка. Расположение каналов в элементах диодной накачки не оптимально, так как расстояние от элементов накачки до каналов не минимально, как следствие этого, падает эффективность отвода тепла с нагретой поверхности элементов накачки. Это может привести к снижению качества охлаждения элементов накачки и падению мощности выходного лазерного пучка.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является ОУГ с диодной накачкой, содержащая размещенные в корпусе в виде многогранника: АЭ в виде стержня, матрицы лазерных диодов (МЛД), расположенные вокруг и вдоль АЭ равномерно и обращенные излучающей областью к АЭ, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения АЭ и МЛД, контур охлаждения АЭ содержит трубку, охватывающую АЭ с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки (патент РФ №2498467, МПК H01S 3/0933, 3/042, опубл. 2013 г.). На обоих торцах трубки установлены демпфирующие элементы в виде сильфонов, МЛД расположены на держателях, размещенных на внешней поверхности каждой грани корпуса. ОУГ снабжена входным и выходным патрубками, соединенными с входным и выходным коллекторами, из которых выходят каналы, соединенные с каналами, выполненными в каждом держателе и МЛД. Контур охлаждения МЛД снабжен дополнительными входным и выходным патрубками.

Расположение МЛД равномерно вокруг АЭ позволяет равномерно заполнить АЭ излучением накачки, что уменьшает в нем термические напряжения, а также повышает эффективность накачки. Выполнение системы охлаждения из двух независимых контуров охлаждения позволяет независимо регулировать и поддерживать оптимальную температуру для МЛД и АЭ.

Однако ОУГ с двумя контурами охлаждения содержит большое число деталей, что существенно сказывается на массогабаритных характеристиках. Значительная часть излучения накачки не поглощается, т.к. диаметр АЭ меньше излучающей области МЛД, что снижает кпд доставки излучения накачки, а следовательно, и мощности лазерного излучения, а применение сильфонов в качестве демпфирующих элементов снижает прочность и устойчивость конструкции к ударным и вибрационным нагрузкам. А конструкция системы охлаждения не допускает эксплуатацию ОУГ в условиях климатических воздействий.

Задача, на решение которой направлено изобретение, - повышение эффективности накачки, оптимизация массогабаритных характеристик, системы охлаждения и термостабилизации, обеспечение жесткости конструкции, создание конструктивно обособленного и удобного при эксплуатации устройства, устойчивого к ударным, тепловым и вибрационным нагрузкам.

Технический результат, получаемый при использовании предлагаемого технического решения, - упрощение системы охлаждения активного элемента и термостабилизация элементов накачки, увеличение кпд и мощности излучения, обеспечение устойчивости конструкции к вибрационным, ударным и тепловым воздействиям.

Указанный технический результат достигается тем, что в квантроне твердотельного лазера с термостабилизацией диодной накачки, содержащем размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, особенность заключается в том, что квантрон снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.

Совмещение в конструкции выступов корпуса функции контротражателя диодной накачки и световода, обеспечение контура охлаждения матриц элементами термостабилизации с теплоотводами, позволяющими охлаждать МЛД только одним теплообменным модулем, а также применение прижимов для уплотнения и центрирования АЭ в корпусе, позволяет упростить систему охлаждения АЭ и термостабилизации МЛД, а также увеличить кпд и мощность излучения, обеспечивая при этом устойчивость конструкции квантрона к вибрационным, ударным и тепловым воздействиям. Таким образом решили задачу повышения эффективности накачки, оптимизировали массогабаритные характеристики и систему охлаждения и термостабилизации, обеспечили жесткость конструкции квантрона и создали конструктивно обособленное и удобное при эксплуатации устройство, устойчивое к ударным, тепловым и вибрационным нагрузкам.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного устройства. В результате поиска не выявлены технические решения с этими признаками. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг. 1 представлен продольный разрез квантрона.

На фиг. 2 - поперечный разрез квантрона.

Квантрон твердотельного лазера с термостабилизацией диодной накачки (фиг. 1, 2) содержит выполненный в виде многогранника (например, в виде шестигранника) корпус 1, в котором установлен активный элемент (АЭ) 2 в виде стержня, торцы которого закреплены в прижимах 3, 4, установленных в корпусе. Квантрон также содержит матрицы лазерных диодов (МЛД) 5, световоды 6 и систему охлаждения. МЛД 5 расположены вокруг и вдоль АЭ равномерно и обращены к АЭ излучающей областью.

На внутренней поверхности корпуса размещены выступы 7, на каждой грани которых параллельно оси АЭ расположены световоды 6 в виде плоских полированных металлических поверхностей. Угол β наклона металлических поверхностей световода 6 получается расчетным путем. Каждый выступ 7 содержит контротражатель 9 - отражающую диаметральную поверхность, обращенную к АЭ и расположенную напротив каждой матрицы.

Система охлаждения выполнена в виде двух независимых контуров для охлаждения АЭ и МЛД. Контур охлаждения АЭ содержит трубку 10, охватывающую АЭ с образованием кольцевого канала шириной δ, и размещенные в прижимах 3 входной и выходной коллекторы 11, из которых выходят каналы a. Входной и выходной коллекторы 11 соединены с кольцевым каналом δ, который формирует слой охлаждающей жидкости (ОЖ), охлаждающий АЭ и образован стенкой трубки 10 и АЭ 2.

Трубка 10 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки 10 рассчитываются, исходя из требуемой фокусировки излучения накачки. Прижимы 3 применены - для герметизации трубки 10, а прижимы 4 для герметизации АЭ и центрирования его в корпусе квантрона относительно трубки 10.

Контур охлаждения матриц содержит термоинтерфейс 12, теплоотводы 13 и элементы термостабилизации 14, размещенные в отверстиях b и с теплообменного модуля 15 и теплообменников 16. В качестве элементов термостабилизации 14 используются нагреватели (в отверстиях b) и элементы охлаждения (в отверстиях с), при этом элементы охлаждения установлены только в теплообменном модуле 15. Теплоотводы 13 при необходимости могут быть заменены контурными либо пластинчатыми тепловыми трубами.

Одна из матриц расположена на переходнике 17, а остальные на теплообменниках 16, установленных на внешней поверхности корпуса. Переходник 17 закреплен на теплообменном модуле 15, который установлен на внешней поверхности корпуса, а теплообменники 16 и теплообменный модуль 15 связаны с помощью тееплоотводов 13. Термоинтерфейс 12 размещен в местах соединения теплоотводов 13 с теплообменниками 16 и теплообменным модулем 15, а также в соединении переходника 17 и теплообменного модуля 15. Термоинтерфейс 12 может быть выполнен, например из галия или галистана. Также термоинтерфейс 12 размещен в соединении переходника 17 с матрицей и в соединении матриц с теплообменниками 16 и может быть выполнен из низкотемпературного припоя (например, сплава Розе или Вуда).

В качестве материала для деталей, участвующих в теплообмене (теплообменники, теплоотводы, термоинтерфейс, теплообменный модуль), применены материалы с большим коэффициентом теплопроводности.

Устройство работает следующим образом. На МЛД 5 (фиг. 1, 2) подается ток накачки с заданной амплитудой, при этом возникает излучение накачки, проходящее сквозь трубку 10 и ОЖ кольцевого канала δ, при этом большая часть излучения поглощается АЭ 2, часть поглощенной энергии накачки идет на тепловые потери. Оставшаяся доля излучения, не поглотившаяся в АЭ на первом проходе, отражается от контротражателей 9 и вновь направляется в АЭ 2. Одновременно боковые лучи МЛД падают на световоды 8 и, многократно отразившись, направляются к АЭ 2.

Охлаждение АЭ 2 происходит либо прокачкой теплоносителя, либо стационарно следующим образом. ОЖ закачивается по каналу а прижима 3 (фиг. 1), поступает во входной коллектор 11, затем попадает в кольцевой канал шириной δ охлаждения АЭ 2. Поток ОЖ протекает вдоль всей поверхности АЭ и контактирует с ней. Таким образом происходит охлаждение кристалла АЭ. На выходе из кольцевого канала δ противоположного конца АЭ ОЖ в обратном порядке собирается в выходной коллектор 11, затем через каналы а прижима 3 выводится из квантрона либо герметизируется в нем.

Для обеспечения заданных режимов работы квантрона в заданных условиях эксплуатации может возникнуть необходимость термостабилизации МЛД. При этом обеспечение выхода на температурный рабочий режим элементов накачки обеспечивается следующим образом. Нагреватели, установленные в отверстиях b теплообменного модуля 15 и теплообменников 16 (фиг. 1. 2), повышают температуру МЛД 5 от исходной до температуры выхода на рабочий режим. Теплоотводы 13 обеспечивают сброс тепла, образованного внешними климатическими условиями эксплуатации и в процессе работы элементов накачки, с теплообменников 16 на корпус теплообменного модуля 15. Элементы охлаждения, установленные в отверстии с, обеспечивают отвод тепла на любую теплоотводящую поверхность, при этом термоинтерфейс 12 обеспечивает высокую теплопроводность между элементами конструкции, участвующими в теплообмене. Таким образом снижается температура матриц до рабочей и происходит термостабилизация элементов накачки.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условии:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в электронной и оптико-механической промышленности при изготовлении лазерных устройств с повышенной мощностью;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».

Квантрон твердотельного лазера с термостабилизацией диодной накачки, содержащий размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, отличающийся тем, что снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
Источник поступления информации: Роспатент

Показаны записи 631-640 из 693.
20.04.2023
№223.018.4abd

Устройство дистанционного управления системой разгрузки виброиспытательной установки

Изобретение относится к управляющим и регулирующим средствам управления технологическими процессами. Устройство дистанционного управления системой разгрузки подвижной части виброиспытательной установки содержит блок дистанционного управления, снабженный управляющим устройством, соединенным с...
Тип: Изобретение
Номер охранного документа: 0002778077
Дата охранного документа: 15.08.2022
20.04.2023
№223.018.4d46

Способ изготовления газоразрядной камеры для газоразрядного генератора высокочастотных импульсов с заданной несущей частотой генерации

Изобретение относится к радиочастотной технике и может быть использовано при разработке и создании мощных импульсных генераторов высокочастотного (ВЧ) диапазона. Технический результат - повышение точности обеспечения заданного значения несущей частоты генерации газоразрядного ВЧ-генератора на...
Тип: Изобретение
Номер охранного документа: 0002793096
Дата охранного документа: 29.03.2023
20.04.2023
№223.018.4d6a

Способ отработки технологии лазерной космической связи и стенд для его реализации

Изобретение относится к технике лазерной космической связи и предназначено для подтверждения технических характеристик терминала космической связи на испытательном стенде. Технический результат состоит в обеспечении возможности в наземных условиях на испытательном стенде моделировать как...
Тип: Изобретение
Номер охранного документа: 0002793099
Дата охранного документа: 29.03.2023
20.04.2023
№223.018.4f09

Двухцелевой транспортный упаковочный комплект для технологического обращения и транспортирования по дорогам общего пользования изделий активной зоны реактора

Изобретение относится к ядерной технике, в частности к радиационно-защитным контейнерам, предназначенным как для технологического обращения, так и для транспортирования их по дорогам общего пользования. Двухцелевой транспортный упаковочный комплект (ТУК) содержит металлический корпус с ребрами...
Тип: Изобретение
Номер охранного документа: 0002793228
Дата охранного документа: 30.03.2023
21.04.2023
№223.018.500e

Устройство для сборки и пайки матрицы лазерных диодов

Изобретение относится к устройствам, специально предназначенным для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей, а именно к креплению полупроводникового прибора на опоре для сборки и пайки матриц лазерных диодов. Устройство для сборки и пайки...
Тип: Изобретение
Номер охранного документа: 0002746710
Дата охранного документа: 19.04.2021
21.04.2023
№223.018.508f

Способ определения скорости коррозии сталей в тяжелых жидкометаллических теплоносителях, содержащих кислород

Изобретение относится к коррозийным испытаниям и может быть использовано в атомной промышленности при обосновании работоспособности конструкционных материалов реакторных установок нового поколения. Способ определения скорости коррозии сталей в тяжелых жидкометаллических теплоносителях,...
Тип: Изобретение
Номер охранного документа: 0002794066
Дата охранного документа: 11.04.2023
22.04.2023
№223.018.50f2

Взрывной логический элемент

Изобретение относится к дискретным преобразователям, используемым для управления различными приборами и механизмами с помощью определенной последовательности командных выходных сигналов, сформированных комбинацией входных сигналов, к детонационным устройствам на основе взрывных логических...
Тип: Изобретение
Номер охранного документа: 0002794259
Дата охранного документа: 13.04.2023
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
09.05.2023
№223.018.52bc

Способ видеорегистрации быстропротекающего процесса, сопровождающегося интенсивным излучением в оптическом диапазоне

Изобретение относится к области силуэтной регистрации быстропротекающих процессов, сопровождающихся интенсивным излучением в оптическом диапазоне. Способ включает в себя видеорегистрацию процесса скоростными видеокамерами на фоне диффузионно-рассеивающего экрана, подсвеченного импульсным...
Тип: Изобретение
Номер охранного документа: 0002795189
Дата охранного документа: 02.05.2023
10.05.2023
№223.018.5371

Многоканальный измеритель параметров датчиков

Изобретение относится к измерительной технике и может быть использовано для измерения температур или сопротивлений полупроводниковых и резистивных тензодатчиков, температурных датчиков, датчиков давления. Технический результат – расширение функциональных возможностей, расширение динамического...
Тип: Изобретение
Номер охранного документа: 0002795214
Дата охранного документа: 02.05.2023
Показаны записи 261-261 из 261.
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
+ добавить свой РИД