×
10.04.2016
216.015.2b53

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СТРУЕФОРМИРУЮЩИХ СОПЕЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном материале, полученном в условиях высоких давлений и температур с использованием связующего материала, и окончательную обработку рабочего отверстия, после которого его подвергают азотированию, при этом композиционный алмазный материал содержит алмазную фазу и фазу связующего, включающего никель и титан при содержании титана в количестве 5,0-15,0 вес.%, а азотирование проводят в среде чистого азота при давлении 1,2-1,5 атм, температуре 700-900°C в течение 1-15 ч. Технический результат, достигаемый в изобретении, заключается в повышении срока службы струеформирующего сопла путем повышения износостойкости стенок рабочего отверстия сопла, а также в обеспечении сохранения компактности абразивосодержащего потока в течение более длительного времени, что приводит к повышению эффективности работы струеформирующего сопла при газо- и гидроабразивной обработке материалов. 4 з.п. ф-лы, 1 пр.

Область техники. Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы, например, для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов.

Предшествующий уровень техники. Струеформирование обычно осуществляется путем подачи под большим давлением воды или газа через сопло с небольшим отверстием. В зависимости от вида обработки в струю могут быть введены абразивные наполнители. Для точной и эффективной обработки материалов сопло должно формировать компактную хорошо сфокусированную струю и сохранять ее компактность длительное время. На стенках рабочего отверстия сопла при прохождении воздушной или водяной струи образуется пристеночный турбулентный слой, обладающий тормозящим эффектом, который нарушает параллельность потока. Поэтому качество обработки рабочего отверстия оказывает существенное влияние на образование компактной струи. Кроме того, в результате абразивного воздействия струи на стенки рабочего отверстия сопла происходит струйное истирание стенок, на последних появляются следы износа, приводящие к нарушению компактности струи, к потере напора и росту сил сопротивления. В этом случае необходима замена сопла на новое. Следует также учитывать, что сопло является дорогостоящим элементом в струеформирующих устройствах, поэтому частая замена сопла приводит к увеличению затрат на струйную обработку.

Вполне очевидно, что износостойкость сопла в большей степени зависит комплексно от материала, из которого оно изготовлено, и от вида обработки, которой подвергается материал сопла при его изготовлении.

Известно, что для изготовления сопел используются различные поликристаллические сверхтвердые материалы, содержащие порошки алмаза и связующую среду. Такие материалы имеют высокую твердость, благодаря большому содержанию в них алмазных порошков имеют низкий коэффициент трения, высокую теплопроводность, высокую износостойкость и соответственно имеют высокую долговечность.

Известен способ получения поликристаллического алмаза (RU 1029555, опублик. 20.07.1999 г.), который включает воздействие сверхвысокого давления при высокой температуре на полую заготовку из углеродсодержащего материала с размещенным в ней металлом-катализатором. С целью повышения абразивной стойкости и размеров поликристаллов в полость заготовки дополнительно вводят тугоплавкий материал в количестве 4-90% от объема углеродсодержащего материала. Тугоплавкий материал выбирают из группы: титан, гафний, ванадий, цирконий, ниобий, молибден, тантал, вольфрам, рений, хром, их сплавы или соединения с углеродом, азотом или кремнием, графитоподобный нитрид бора, оксид алюминия.

Недостатком указанного материала является практическая невозможность его использования при изготовлении соплового инструмента в связи со значительным диаметром дефектной области композита (2,5-4 мм) по сравнению с диаметром сопла инструмента (0,2-1 мм).

Известен термостойкий композиционный алмазный спеченный материал (RU №2312844, опублик. 2003 г.), который может быть использован как в режущих инструментах, а также как износостойкий материал, работающий в условиях трения. Материал получают при высоких давлениях (P=7,7 ГПа) и высоких температурах (Т=2100°C) спеканием алмазных порошков с размерностью зерен менее 200 нм без использования спекающей добавки. Материалу может быть придана различная конфигурация посредством лазерной или электроэрозионной обработки, шлифования и полирования. Так как в материале отсутствует связующее, он имеет высокую твердость - 85 ГПа по Викерсу и высокую износостойкость.

Недостаток материала заключается в том, что для его изготовления требуются достаточно высокие давления и очень высокие температуры. Оборудование, на котором реализуются эти условия, не позволяет изготавливать материал больших размеров, поэтому материал имеет узкий диапазон применения.

Известен способ изготовления сопла (US 2002142709, опублик. 2002 г.). Для изготовления сопла используется износостойкий спеченный поликристаллический алмазный материал, получаемый с использованием высоких давлений и температур. Материал изготавливается спеканием алмазных порошков в присутствии катализатора. Катализатор может быть представлен в виде порошка, который смешивается с алмазным порошком, либо катализатор может быть введен в слой алмазного порошка пропиткой. В качестве катализатора-связующего может быть использован кобальт или сплав кобальта, например, с никелем. Материал имеет достаточную износостойкость и электропроводность. Спеченный алмазный материал подвергается обработке с помощью электроискрового или лазерного резания или других видов обработки для получения внешних размеров. В полученной заготовке электроискровым сверлением формируют рабочее отверстие и обрабатывают шлифованием и полированием.

Недостаток известного способа заключается в следующем. Структура спеченного алмазного материала представляет собой алмазные зерна, связанные друг с другом связующим материалом, физико-механические характеристики которого существенно уступают алмазу. При эксплуатации сопла стенки рабочего отверстия под воздействием абразивосодержащей струи, проходящей через это отверстие под высоким давлением, будут подвергаться износу. При этом износ стенок будет происходить локально по всей поверхности в тех местах, где находится металлическая фаза, образуя так называемые эрозии. Наличие эрозий на поверхности рабочего отверстия нарушает прямолинейность потока, в водном или газовом потоке образуются завихрения, которые нарушают компактность струи, в результате уменьшается ее скорость, увеличивается потеря энергии. Все это приводит к снижению эффективности обработки деталей.

Прототипом предложенного изобретения является способ изготовления струеформирующего сопла (WO 2008032272, опублик. 2008 г.) из поликристаллического алмазного материала, содержащего в качестве связующей среды кобальт, кремний и карбид кремния с использованием аппарата для синтеза при сверхвысоком давлении. В алмазном поликристалле формируют рабочее отверстие с помощью лазерного сверления, которое обрабатывают до получения необходимых размеров и подвергают полировке, чтобы получить окончательные размеры и качество поверхности отверстия. Полировку в основном проводят с помощью проволоки из меди или стали в присутствии тонкозернистого алмазного порошка.

Недостатком способа является наличие кремния, который при кристаллизации увеличивает свой объем, что приводит к появлению микронапряжений и в дальнейшем к возникновению микротрещин. В процессе изготовления соплового или другого вида инструмента при нагрузках происходит образование трещин и нарушение целостности поликристаллов.

Раскрытие изобретения. Технической задачей, на решение которой направлено предложенное изобретение, является разработка способа изготовления струеформирующего сопла, в котором достигается повышение срока службы струеформирующего сопла путем повышения износостойкости стенок рабочего отверстия сопла, а также обеспечивается сохранение компактности абразивосодержащего потока в течение более длительного времени, что приводит к повышению эффективности работы струеформирующего сопла при газо- и гидроабразивной обработке материалов.

Указанный технический результат достигается в изобретении следующим образом.

Способ изготовления струеформирующего сопла включает формирование рабочего отверстия в композиционном алмазном материале, полученном в условиях высоких давлений и температур с использованием связующего материала, и окончательную обработку рабочего отверстия, после которой его подвергают азотированию.

При этом композиционный алмазный материал содержит алмазную фазу и фазу связующего, включающего никель и титан при содержании титана в количестве 5,0-15,0 вес.%.

В частном случае азотирование проводят в азотосодержащей среде при температуре 700-900°С в течение 1-15 ч.

Кроме того, азотирование проводят в среде чистого азота.

Также композиционный алмазный материал получают синтезом из углеродосодержащего материала в области термодинамической стабильности алмаза в присутствии связующего материала.

Кроме того, связующий материал содержит титан в количестве 5,0-10,0 вес.%.

Также композиционный алмазный материала получают спеканием алмазных порошков в присутствии связующего материала.

Кроме того, композиционный алмазный материала получают пропиткой алмазных порошков расплавом связующего материала.

Варианты осуществления изобретения. Способ осуществляют следующим образом.

Для изготовления сопла используют поликристаллические алмазные материалы, которые получают с использованием различных технологий. Один из способов получения поликристаллического алмазного материала включает смешивание алмазного порошка с порошками металлов-катализаторов, помещение смеси в устройство, в котором создаются условия высокого давления и температуры, обеспечивающие каталитические реакции и связывание алмазных частиц друг с другом.

Другой способ получения поликристаллического материала включает помещение в форму алмазного порошка и уплотнение порошка любым известным способом, например прессованием, виброуплотнением и др. Для получения материала с высоким объемным содержанием алмазного порошка можно использовать алмазные порошки разной зернистости, при этом зернистость порошков выбирают таким образом, чтобы порошки более мелкой зернистости размещались между алмазными порошками большей зернистости. На уплотненные порошки укладывают пропиточный материал и производят пропитку под давлением при температуре, обеспечивающей требуемую жидкотекучесть пропиточного материала.

Также поликристаллический материал может быть получен формированием заготовки из углеродосодержащего материала, которую пропитывают металлом или сплавом-катализатором в условиях высокого давления и температуры. В этом способе металл-катализатор формируется в виде стержня, в контакте с которым находится углеродосодержащий материал. Пропитку проводят при давлении выше 7 ГПа и при температуре, обеспечивающей жидкотекучесть катализатора, при которой происходит полное его просачивание в объем графитовой заготовки. Температура пропитки зависит от состава катализатора. В качестве катализатора используется никель или его сплавы с металлами: титан, молибден, хром. Углеродосодержащим материалом служит графит. В условиях синтеза происходит образование алмаза, которое начинается у поверхности контакта углеродосодержащего материала со стержнем и распространяется в глубь углеродосодержащего материала типа «карбонадо» или «баллас».

Во всех вышеперечисленных случаях композиционный алмазный материал содержит алмазную фазу и фазу связующего, включающего никель и титан при содержании титана в количестве 5,0-15,0 вес.%.

Сплав никель - титан обладает высокой прочностью с удовлетворительной пластичностью. Превышение содержания титана приводит к охрупчиванию матрицы, тем самым к снижению прочностных свойств композита в целом. Меньшее количество титана затрудняет процесс последующего азотирования.

Для изготовления сопла в алмазном поликристалле формируют рабочее отверстие. Так как поликристалл с никелевым связующим является электропроводным, рабочее отверстие может быть образовано электроискровой обработкой, лазерным сверлением, а также любым известным подходящим способом.

После получения отверстия производят его многоступенчатую обработку. Вначале производят черновое шлифование отверстия инструментом в виде проволоки или иглы в присутствии крупнозернистого алмазного порошка. Затем производят шлифование отверстия мелкозернистым алмазным порошком.

Отверстие полируют до получения гладкой поверхности, которая способствует формированию компактной газо- и гидроабразивной струи с постоянным давлением и которая имеет высокую скорость истечения из рабочего отверстия без раздробления и распыления.

После того как рабочее отверстие было окончательно обработано, рабочее отверстие подвергают процессу азотирования. Технологически удобнее процессу азотирования подвергнуть сопло целиком. При азотировании диффузионному насыщению подвергаются участки, которые имеют металлическую природу. Такими участками являются участки матричного материала, которым являются металлы или сплавы-катализаторы. Так как в качестве материала для сопла использовали алмазный поликристалл, содержащий связующее в виде сплава никель-титан, поверхность стенки отверстия содержит участки этого сплава.

Эти участки подвергаются диффузионному насыщению азотом с образованием нитридного слоя. Образование нитридного слоя способствует повышению твердости и износостойкости этих участков, делая меньшее различие по физико-механическим свойствам между участками связующего и участками алмазного материала. В целом повышается износостойкость стенки рабочего отверстия, стойкость к появлению задиров и кавитационным воздействиям и повышается коррозионная стойкость сопла в водных и воздушных средах.

Для проведения процесса азотирования сопло помещают в печь, подают в печь азот и нагревают до температуры 700-900°C. Так как сопла имеют небольшие габаритные размеры, для азотирования можно применять камерные печи.

Предпочтительно для азотирования используется чистый азот. Можно использовать аммиак или его смесь с азотом. Но в этом случае нитридный слой приобретет некоторую хрупкость.

В среде азота сопло выдерживают в течение 1-15 ч. При этой температуре в течение 1-15 ч на поверхности стенки рабочего отверстия образуется нитридный слой, толщина которого составляет 35-40 нм. Нитридный слой такой толщины не нарушает рельеф поверхности стенок рабочего канала, сохраняя его гладкость, не отслаивается от поверхности.

Увеличение времени азотирования приведет к увеличению толщины покрытия и его отслаиванию от матричного участка из-за различных коэффициентов термического расширения, в том числе связанных с содержанием алмаза на азотируемой поверхности. Уменьшение времени азотирования приведет к уменьшению толщины слоя. При маленькой толщине слоя не будет получена требуемая его сплошность и плотность.

Повышение температуры выше 900°C приведет к повышению скорости азотирования, но также вызовет графитизацию алмазных зерен компакта и снижению абразивной стойкости. Снижение температуры ниже 700°C приведет к значительному повышению времени азотирования и к необоснованному снижению производительности процесса азотирования.

Пример

Изготавливали несколько алмазных композитов синтезом из графита при давлении 9,0 ГПа и температуре около 1700°C в течение 10 с. При синтезе использовали сплав-катализатор состава никель - 10% титана. Размер композита - диаметр 4 мм, высота 4 мм. Из алмазных композитов алмазным шлифованием изготавливали диски толщиной 2 мм, диаметром 4 мм. Из этих дисков лазером вырезали сопло с наружным диаметром 2 мм и диаметром отверстия 0,3 мм. Далее проводили обработку и полировку отверстия для достижения шероховатости Ra=0,32. Азотирование проводили при давлении азота 1,2-1,5 атм, при температуре 850 C в течение 3 часов. Толщина нитридного покрытия на металлических участках алмазного композита достигала 30-40 нм. Шероховатость поверхности по сравнению с первоначальной шероховатостью не изменялась. На других поликристаллах проводили азотирование сопла при температуре 700°C. Время азотирования для получения плотного сплошного покрытия составляло 15 часов. Дальнейшее снижение температуры азотирования является неэффективным, так как для получения нитридного слоя толщиной 30-40 нм потребуется много времени.

Были изготовлены алмазные композиты с применением катализатора состава никель - 20 вес.% титана. Большое количество титана приводило к охрупчиванию поликристалла; прочностные характеристики такого сопла существенно снижались.

Композиты, которые синтезировались с применением катализатора состава никель - 5% титана, сохраняли свою целостность и были использованы для изготовления сопел. Для получения плотного нитридного слоя время азотирования составляло 15 часов. Снижение содержания титана ниже 5 вес % осложняло процесс азотирования, повышение износостойкости у таких сопел было малозначительным.

Изготовленные в соответствии с изобретением сопла испытывали при водоабразивной резке при давлении 3800 атм стальных листов толщиной 20 мм. Возможность образования компактной струи оценивали визуально. Сверхнормативного разбрызгивания струи для азотированных сопел не наблюдалось. Режущую способность водоабразивной струи оценивали по скорости резания стальной плиты. Скорость резания при использовании азотированных сопел была на 20% выше, чем у неазотированных, стойкость азотированных сопел превышала стойкость неазотированных сопел на 40-60%.

Источник поступления информации: Роспатент

Показаны записи 91-100 из 338.
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b6e3

Катализатор и способ осуществления реакции фишера-тропша с его использованием

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (CHNCo), а в качестве...
Тип: Изобретение
Номер охранного документа: 0002614420
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b964

Устройство для измерения отношения напряжения мостовых датчиков

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый...
Тип: Изобретение
Номер охранного документа: 0002615167
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba4a

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита бария больше 230 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002615562
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb9b

Способ двухлучевых термолинзовых измерений с обратной синхронизацией сигнала

Изобретение относится к области спектроскопии и касается способа проведения лазерноиндуцированных двухлучевых термолинзовых измерений. Способ включает в себя не менее двух циклов измерений, каждый из которых состоит из полуцикла нагрева исследуемого объекта индуцирующим лазерным лучом и...
Тип: Изобретение
Номер охранного документа: 0002615912
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bbd3

Способ нанесения покрытий на твердые сплавы

Изобретение относится к области металлообработки и может быть использовано для нанесения износостойких покрытий на режущий инструмент. Способ включает нанесение покрытия на поверхность пластины из твердого сплава в камере установки PVD, при этом на поверхность пластины наносят защитный слой из...
Тип: Изобретение
Номер охранного документа: 0002615941
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c1bb

Способ получения нетканых материалов с антибактериальными свойствами

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее...
Тип: Изобретение
Номер охранного документа: 0002617744
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c284

Интегральная схема быстродействующего матричного приемника оптических излучений

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д. Интегральная схема быстродействующего матричного приемника оптических излучений содержит электрическую схему,...
Тип: Изобретение
Номер охранного документа: 0002617881
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c356

Способ управления процессом жидкофазного восстановления ромелт для переработки железосодержащих материалов высокой степени окисленности

Изобретение относится к производству жидкого чугуна процессом жидкофазного восстановления Ромелт при переработке железосодержащих материалов высокой степени окисленности. В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов...
Тип: Изобретение
Номер охранного документа: 0002618030
Дата охранного документа: 02.05.2017
Показаны записи 91-100 из 204.
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b6e3

Катализатор и способ осуществления реакции фишера-тропша с его использованием

Изобретение относится к катализаторам и к способу синтеза Фишера-Тропша. Катализатор на основе комплексных солей кобальта для синтеза Фишера-Тропша содержит частицы кобальта, при этом в качестве комплексной соли кобальта выбирают фталоцианиновый комплекс кобальта (CHNCo), а в качестве...
Тип: Изобретение
Номер охранного документа: 0002614420
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b964

Устройство для измерения отношения напряжения мостовых датчиков

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый...
Тип: Изобретение
Номер охранного документа: 0002615167
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba4a

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита бария больше 230 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002615562
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb9b

Способ двухлучевых термолинзовых измерений с обратной синхронизацией сигнала

Изобретение относится к области спектроскопии и касается способа проведения лазерноиндуцированных двухлучевых термолинзовых измерений. Способ включает в себя не менее двух циклов измерений, каждый из которых состоит из полуцикла нагрева исследуемого объекта индуцирующим лазерным лучом и...
Тип: Изобретение
Номер охранного документа: 0002615912
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bbd3

Способ нанесения покрытий на твердые сплавы

Изобретение относится к области металлообработки и может быть использовано для нанесения износостойких покрытий на режущий инструмент. Способ включает нанесение покрытия на поверхность пластины из твердого сплава в камере установки PVD, при этом на поверхность пластины наносят защитный слой из...
Тип: Изобретение
Номер охранного документа: 0002615941
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c1bb

Способ получения нетканых материалов с антибактериальными свойствами

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее...
Тип: Изобретение
Номер охранного документа: 0002617744
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c284

Интегральная схема быстродействующего матричного приемника оптических излучений

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д. Интегральная схема быстродействующего матричного приемника оптических излучений содержит электрическую схему,...
Тип: Изобретение
Номер охранного документа: 0002617881
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c356

Способ управления процессом жидкофазного восстановления ромелт для переработки железосодержащих материалов высокой степени окисленности

Изобретение относится к производству жидкого чугуна процессом жидкофазного восстановления Ромелт при переработке железосодержащих материалов высокой степени окисленности. В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов...
Тип: Изобретение
Номер охранного документа: 0002618030
Дата охранного документа: 02.05.2017
+ добавить свой РИД