×
10.05.2016
216.015.2b0c

Результат интеллектуальной деятельности: СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ

Вид РИД

Изобретение

№ охранного документа
0002583882
Дата охранного документа
10.05.2016
Аннотация: Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом полете, включает в себя сопоставление измерений с калиброванными значениями и определение погрешностей в измерениях датчика, фиксирование в связанной с космическим аппаратом системе координат вектор определяющий положение датчика микроускорений, измерение угловой скорости космического аппарата и его угловое ускорение определение углового положения и орбиты космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρ на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле где: µ - гравитационный параметр Земли; r - расстояние от центра Земли до центра масс космического аппарата; с - баллистический коэффициент космического аппарата, и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.
Основные результаты: Способ тарировки датчика микроускорений в космическом полете, включающий сравнение измерений датчика микроускорений с калиброванными значениями и определение погрешностей в измерениях датчика микроускорений, отличающийся тем, что фиксируют в связанной с космическим аппаратом системе координат вектор , определяющий положение датчика микроускорений, измеряют угловую скорость космического аппарата и его угловое ускорение , определяют угловое положение и орбиту космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρ на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле где - микроускорение в связанной с космическим аппаратом системе координат;µ - гравитационный параметр Земли;r - расстояние от центра Земли до центра масс космического аппарата; - орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата; - скорость космического аппарата;c - баллистический коэффициент космического аппарата,и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА).

Для измерения ускорений используются специальные датчики и приборы - акселерометры. В процессе их использования вследствие различных причин происходит ухудшение точности измерений и появляется необходимость установления величины погрешности прибора, т.е. его тарировка. Такая задача возникает и перед началом использования прибора.

Известен способ тарировки датчиков ускорений - акселерометров, реализуемый устройством для создания нормированных ускорений при поверке акселерометров [1] (патент RU 2393488 с 1 по заявке 2009112707/28 от 06.04.2009). Данный способ не применим в космическом полете, где измеряются малые ускорения ~10-3 - 10-7g, где .

Известен способ тарировки датчика микроускорений, основанный на сопоставлении измерений с калиброванными значениями и определении погрешностей в измерениях датчика микроускорений [2] (патент США №3779065, 1973 г.). В данном способе, взятом авторами за прототип, тарировка датчиков осуществляется путем воздействия на датчик бойком с последующим измерением воздействия и фиксированием показаний датчика. Следует отметить, что в космическом полете на КА возникают обычно малые ускорения и их значение составляет 10-7g - 10-3g [3]. Их точное измерение является весьма сложной технической задачей и для ее решения используются различные датчики микроускорений [4]. В процессе полета возникают неизбежные погрешности в показаниях используемых датчиков и появляется необходимость выполнения их тарировки.

Известные способы, включая способ-прототип, не позволяют решить задачу тарировки датчиков микроускорений в космическом полете.

Задачей, на решение которой направлено настоящее изобретение, является определение погрешностей датчика микроускорений в космическом полете.

Технический результат достигается тем, что в способе тарировки датчика микроускорений в космическом полете, включающем сравнение измерений датчика микроускорений с калиброванными значениями и определение погрешностей в измерениях датчика микроускорений, фиксируют в связанной с космическим аппаратом системе координат вектор , определяющий положение датчика микроускорений, измеряют угловую скорость космического аппарата и его угловое ускорение , определяют угловое положение и орбиту космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρа на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле

где - микроускорение в связанной с космическим аппаратом системе координат;

µe - гравитационный параметр Земли;

r - расстояние от центра Земли до центра масс космического аппарата;

- орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата;

- скорость космического аппарата;

с - баллистический коэффициент космического аппарата,

и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.

За счет выполнения предлагаемых действий возможна тарировка датчика микроускорений в космическом полете. Главная проблема в выполнении тарировки на КА заключается в создании калиброванных значений микроускорений малой величины (до 10-7g). В предлагаемом способе калиброванные значения микроускорений создаются за счет отличительных действий способа. Для анализа процессов, происходящих в аппаратуре космических экспериментов по микрогравитации, главным образом необходимо знать квазипостоянные величины микроускорений [3], [4]. Квазипостоянные значения микроускорений обусловлены вращением КА вокруг центра масс, неоднородностью гравитационного поля в пределах конструкции КА и действием на КА сопротивления атмосферы. Измеряя угловую скорость и угловое ускорение ΚΑ , можно для заданного вектором положения датчика микроускорений точно определить составляющую калиброванного значения микроускорений за счет вращения КА вокруг центра масс. Измерив угловое положение КА, можно точно определить составляющую, возникающую за счет неоднородности гравитационного поля в пределах конструкции КА. Измеряя точно орбиту КА, можно по изменению орбиты КА и его угловому положению определить плотность атмосферы на высоте полета КА и его ускорение от сопротивления атмосферы. Сложив три составляющие, получим калиброванное значение микроускорений. Сопоставление калиброванного значения микроускорений с измеренным значением, позволит определить погрешность в измерениях датчика микроускорений.

В настоящее время технически все готово для реализации предложенного способа на КА, например, на МКС или на транспортном грузовом корабле ТГК «Прогресс». Для измерения микроускорений на КА могут использоваться датчики типа ИМУ, ИМУ-Ц, MAMS и др. Для измерения угловой скорости и углового ускорения могут использоваться существующие датчики угловых скоростей и угловых ускорений. Для определения углового положения КА могут использоваться датчики ориентации: солнечный датчик, звездный датчик, магнитометр и т.д. Подобные приборы используются, например, на МКС и ТГК «Прогресс». Для определения орбиты КА могут использоваться высокоточные измерения радиоконтроля орбиты, или измерения спутниковых навигационных систем GPS и ГЛОНАСС. Приемники GPS и ГЛОНАСС уже установлены, например, на МКС. Для выполнения расчетов и сопоставления калибровочных значений микроускорений с измеренными могут использоваться вычислительные средства МКС, ТГК «Прогресс».

Список литературы

1. Патент RU 2393488 с 1 по заявке 2009112707/28 от 06.04.2009.

2. Патент США №3779065, 1973 г.

3. М.Ю. Беляев. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: «Машиностроение», 1984.

4. Д.М. Климов, В.И. Полежаев, М.Ю. Беляев, А.И. Иванов, С.Б. Рябуха, В.В. Сазонов. «Проблемы и перспективы использования невесомости в экспериментах на орбитальных станциях». РКТ, серия 12, выпуск 1-2, 2011.

5. Основы теории полета космических аппаратов. М.: «Машиностроение, 1972.

Способ тарировки датчика микроускорений в космическом полете, включающий сравнение измерений датчика микроускорений с калиброванными значениями и определение погрешностей в измерениях датчика микроускорений, отличающийся тем, что фиксируют в связанной с космическим аппаратом системе координат вектор , определяющий положение датчика микроускорений, измеряют угловую скорость космического аппарата и его угловое ускорение , определяют угловое положение и орбиту космического аппарата, по изменению орбиты космического аппарата и определенному его угловому положению оценивают плотность атмосферы ρ на высоте полета космического аппарата и ускорение его торможения, калиброванное значение микроускорения определяют по формуле где - микроускорение в связанной с космическим аппаратом системе координат;µ - гравитационный параметр Земли;r - расстояние от центра Земли до центра масс космического аппарата; - орт оси орбитальной системы координат, направленной по радиус-вектору космического аппарата; - скорость космического аппарата;c - баллистический коэффициент космического аппарата,и сопоставляя калиброванное значение микроускорения и измеренное значение, определяют погрешность в измерениях датчика микроускорений.
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В КОСМИЧЕСКОМ ПОЛЕТЕ
Источник поступления информации: Роспатент

Показаны записи 321-330 из 378.
15.03.2019
№219.016.e0b9

Система распределения электроэнергии

Использование: в электротехнике, в частности в системах распределения электроэнергии самолета, корабля или космического аппарата (КА). Технический результат заключается в увеличении эксплуатационной надежности системы путем обеспечения контроля сопротивления изоляции системы распределения...
Тип: Изобретение
Номер охранного документа: 0002331958
Дата охранного документа: 20.08.2008
20.03.2019
№219.016.e871

Вентиль электрический

Изобретение относится к области электроники и электротехники и может быть использовано в выпрямителях, в устройствах с параллельным соединением источников напряжения питания на общую нагрузку и т.п. Технический результат - увеличение коэффициента полезного действия системы электропитания и...
Тип: Изобретение
Номер охранного документа: 0002451385
Дата охранного документа: 20.05.2012
20.03.2019
№219.016.e949

Коммутатор шин электропитания

Изобретение относится к области электротехники и может быть использовано в аппаратуре систем электропитания для параллельного соединения источников электропитания при работе на общую нагрузку, в ответственных и разветвленных системах с резервированием источников электропитания, в реверсивных...
Тип: Изобретение
Номер охранного документа: 0002444840
Дата охранного документа: 10.03.2012
20.03.2019
№219.016.e998

Устройство для разделения трубопроводов

Изобретение относится к ракетно-космической технике и предназначено для дистанционного разделения трубопроводов, заполненных жидкостями. На разделяемом трубопроводе (1) смонтирован корпус (2), в котором размещены детонирующий удлиненный заряд (3), электродетонатор (4) и кольцевой нож (5)....
Тип: Изобретение
Номер охранного документа: 0002465182
Дата охранного документа: 27.10.2012
29.03.2019
№219.016.ef51

Способ управления кластером находящихся на геостационарной орбите спутников (варианты)

Изобретения относятся к управлению группировками спутников, размещенных в одних и тех же или пересекающихся долготных и широтных диапазонах геостационарной орбиты. Предлагаемый способ заключается в измерении параметров орбит спутников, определении по ним орбитальных элементов, сравнении их с...
Тип: Изобретение
Номер охранного документа: 0002284950
Дата охранного документа: 10.10.2006
04.04.2019
№219.016.fc84

Способ управления давлением в гидравлической системе терморегулирования пилотируемого космического объекта, снабженной гидропневматическим компенсатором

Изобретение относится к системам терморегулирования долговременных пилотируемых космических объектов и может быть использовано экипажем при проведении ремонтных работ. Изобретение может быть также использовано в общем и специальном машиностроении. Способ включает выравнивание давления в...
Тип: Изобретение
Номер охранного документа: 0002360846
Дата охранного документа: 10.07.2009
04.04.2019
№219.016.fd26

Способ контроля герметичности замкнутых изделий

Изобретение относится к области испытательной техники и позволяет повысить достоверность и точность контроля изделий при испытаниях на герметичность. Замкнутое изделие помещают в барокамеру, опрессовывают изделие в барокамере контрольным газом в течение заданного времени, затем контрольный газ...
Тип: Изобретение
Номер охранного документа: 02181195
Дата охранного документа: 10.04.2002
10.04.2019
№219.017.0634

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника, среднего переходника и нижнего переходника, бак окислителя с основными перегородками и заборным устройством, бак...
Тип: Изобретение
Номер охранного документа: 0002412088
Дата охранного документа: 20.02.2011
10.04.2019
№219.017.0636

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника с металлической обшивкой, среднего переходника, нижнего переходника, бак окислителя, бак горючего, межбаковую ферму,...
Тип: Изобретение
Номер охранного документа: 0002412871
Дата охранного документа: 27.02.2011
17.04.2019
№219.017.153f

Способ заправки рабочим телом гидравлических магистралей доставляемого оборудования космических объектов

Изобретение относится к космической технике и может быть использовано для заправки рабочими телами гидравлических магистралей доставляемого на орбитальные космические объекты оборудования. Согласно предлагаемому способу, перед заполнением гидравлической магистрали рабочим телом из бака...
Тип: Изобретение
Номер охранного документа: 0002271969
Дата охранного документа: 20.03.2006
Показаны записи 321-324 из 324.
20.04.2023
№223.018.4ace

Способ мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу мониторинга воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют биомеханические параметры двигательной активности оператора, включая углы в суставах....
Тип: Изобретение
Номер охранного документа: 0002777476
Дата охранного документа: 04.08.2022
20.04.2023
№223.018.4ad8

Способ определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора

Изобретение относится к медицине, а именно к способу определения воздействия невесомости на двигательную активность находящегося на борту космического аппарата оператора. При исполнении способа измеряют в наземных условиях биомеханические параметры двигательной активности оператора, включая...
Тип: Изобретение
Номер охранного документа: 0002777477
Дата охранного документа: 04.08.2022
23.05.2023
№223.018.6cba

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления ПАН...
Тип: Изобретение
Номер охранного документа: 0002771488
Дата охранного документа: 05.05.2022
17.06.2023
№223.018.7ee6

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к аэрокосмической технике. Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (ПАН) содержит узел разъемного крепления ПАН и узел съемной установки устройства управления на иллюминатор (УСУУИ). Узел разъемного крепления снабжен...
Тип: Изобретение
Номер охранного документа: 0002772766
Дата охранного документа: 25.05.2022
+ добавить свой РИД