×
20.02.2016
216.014.e89b

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКОСТИ В ЕМКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002575767
Дата охранного документа
20.02.2016
Аннотация: Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости определяют диэлектрическую проницаемость жидкости. Технический результат: обеспечение возможности повышения точности измерения. 2 ил.
Основные результаты: Способ измерения диэлектрической проницаемости жидкости в емкости, характеризующийся тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, отличающийся тем, что аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости определяют диэлектрическую проницаемость жидкости.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. В частности, это может быть применено для контроля качества нефтепродуктов, сжиженных газов, спирта, кислот и др.

Известны радиоволновые способы измерения расстояний до отражающей поверхности, использующие в работе линейную частотную модуляцию несущей волны (ЛЧМ) сверхвысокочастотного диапазона радиоволн (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 208 с.). Эти частотно-модулированные электромагнитные волны излучаются в сторону поверхности жидкости по нормали к ней. Временное запаздывание отраженной волны относительно падающей приводит к сдвигу частоты между излученными и отраженными волнами. Этот сигнал разностной частоты (СРЧ) выделяется на специальном элементе - смесителе, входящем в состав измерительного устройства. В этом случае частота отраженного от поверхности сигнала отличается от частоты зондирующего сигнала на величину частоты сигнала СРЧ:

где L - расстояние до отражающей поверхности, ΔfМ - максимальный диапазон перестройки частоты, TМ - период линейной модуляции, с - скорость света в вакууме, ε - диэлектрическая постоянная среды распространения радиоволн. Способ позволяет измерять расстояние:

Точность измерения расстояния целиком зависит от точности измерения частоты сигнала СРЧ. Очевидно, что если измерять частоту с помощью счетчика числа переходов через 0, то абсолютная точность будет достигнута при расстоянии, когда на периоде ТМ размещается целое число периодов сигнала СРЧ, однако такое положение возникает только через каждую полуволну этого сигнала, поэтому ошибка будет дискретной и равной:

С другой стороны, если L задано, а ε отлично от 1, то при отсутствии поглощения электромагнитных волн в среде распространения согласно (3) можно измерять диэлектрическую проницаемость:

.

Поскольку измерение основано на вычислении частоты сигнала СРЧ f, которое имеет методическую дискретную ошибку, такая же ошибка будет характерна и при измерении ε:

.

Кроме этого следует отметить, что в реальной ситуации электромагнитные волны проходят путь через воздух до поверхности жидкости, где часть волны отражается и возвращается обратно с временной задержкой τ1, а вторая часть проходит сквозь жидкость, отражается от дна и возвращается опять через жидкость и воздушный промежуток обратно с временной задержкой τ2. То есть сигнал СРЧ будет состоять из двух частот, измерить которые из-за наличия ошибок (3) и (5) сложно при ограниченных возможностях в повышении диапазона перестройки частоты ΔfМ.

Известно также техническое решение - измерение расстояния по максимальному или средневзвешенному значению спектра сигнала разностной частоты в методе с использованием частотной модуляции, которое по технической сущности наиболее близко к предлагаемому способу и принятое в качестве прототипа (Теоретические основы радиолокации / Под ред. Я.Д. Ширмана. - М.: Сов. Радио, 1970. 560 с.). Данный способ-прототип заключается в зондировании поверхности жидкости по нормали к ней частотно-модулированными электромагнитными волнами, приеме отраженных электромагнитных волн, выделение сигнала СРЧ на выходе смесителя между падающими и отраженными электромагнитными волнами и вычисление расстояния по разностной частоте сигнала СРЧ, определяемой по максимальному значению его частотного спектра. Этот способ также можно использовать для измерения ε. Однако при этом методическая дискретная ошибка (2) сохраняется, поскольку спектральный анализ основан на разложении сигнала по целому числу гармоник, в то время как реальный максимум при измерении расстояния может располагаться и между гармониками. Чтобы измерить частоту СРЧ на минимальном расстоянии 0.3 м, надо иметь такую ΔfМ, чтобы можно было наблюдать хотя бы один период сигнала СРЧ. Тогда это будет первая гармоника в спектре СРЧ. Из формулы (1) следует, что ΔfМ в этом случае равна 500 МГц, а ошибка δ равна 0.15 м при диапазоне измерения свыше 0.3 м. Поэтому, чтобы обеспечить приемлемую точность, приходится увеличивать ΔfМ; обычно эта величина для промышленных уровнемеров составляет 1÷2 ГГц, что соответствует δ=7,5÷3,75 см. Дальнейшее увеличение точности достигается путем использования сглаживающих процедур (Езерский В.В., Давыдочкин В.М. Оптимизация спектральной обработки сигнала прецизионного датчика расстояния на основе частотного дальномера // Измерительная техника. 2005. №2. С. 21-25). Однако использование больших значений ΔfМ приводит к увеличению дополнительных погрешностей из-за паразитной частотной модуляции от влияния дополнительных элементов в емкостях и стенок, от неравномерности амплитудно-частотной характеристики трактов, нелинейности модуляции задающего генератора и т.п. Все это вкупе с увеличением стоимости широкополосного устройства приводит к снижению функциональных характеристик уровнемера. Данное техническое решение можно использовать для определения ε при наличии второй частоты в сигнале СРЧ в результате отражения от дна резервуара. Однако в силу указанных выше факторов точность измерения будет недостаточна, особенно в условиях ограничения на возможность увеличения ΔfМ.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе измерения диэлектрической проницаемости жидкости в емкости достигается тем, что сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости судят о диэлектрической проницаемости жидкости.

На фиг. 1 приведена структурная схема устройства для реализации способа.

На фиг. 2 приведены графики смоделированного сигнала СРЧ.

На фиг. 1 показаны модулятор 1, генератор 2, направленный ответвитель 3, передающая антенна 4, приемная антенна 5, смеситель 6, вычислительное устройство 7.

Способ реализуется следующим образом. Генератор линейно-изменяющегося напряжения модулирует частоту генератора СВЧ 2, с выхода которого электромагнитные колебания проходят через направленный ответвитель 3 на антенну 4 и излучаются в сторону поверхности жидкости 8. Отраженные от поверхности жидкости и от дна емкости электромагнитные волны принимаются антенной 5 и поступают на смеситель 6, куда также поступает часть мощности падающей волны от направленного ответвителя 3. На выходе смесителя 6 формируется сигнал разностной частоты, который поступает в вычислительное устройство 7, где происходит его запись в массив данных за период частотной модуляции. Из двух частотных компонент сигнала СРЧ более высокочастотная компонента соответствует общему времени задержки распространения электромагнитной волны τ через первый слой - воздух, толщиной L1, и второй слой - контролируемую среду с диэлектрической проницаемостью ε, толщиной L2, - τ1 и τ2 соответственно. Формула (1) в нашем случае примет вид:

.

Если выражение для L1 из формулы (1) подставить в формулу (6), то после преобразования можно записать выражение для определения толщины слоя среды L2:

.

При известном общем расстоянии от датчика до дна емкости - D, L2=D-L1, из формулы (7) с учетом выражения для L1 из формулы (2) можно выписать выражение для ε:

.

На фиг. 2 приведены графики смоделированного сигнала СРЧ с ΔfМ=150 МГц, с периодом модуляции ТМ=1 с и 256 выборок, составленного из суммы двух синусоид с добавлением шума на уровне 0,1 от амплитуды основной синусоиды (точки) и результат аппроксимации двумя синусоидами (сплошная линия). При указанных данных согласно формуле (1) расстояние в метрах при ε=1 численно равно частоте СРЧ f в Герцах. Амплитуды первого и второго сигнала, отраженные от поверхности жидкости и от дна, - 10 и 1, а фазы - π/4 и - π/2 соответственно. Частоты f1=0,65 Гц, f2=4 Гц. В этом случае для моделирования используем вариант с подбором параметров двух синусоид:

,

где a1, b1, c1, а2, b2, с2 - соответственно амплитуда, частота и фаза первой и второй синусоиды модельного сигнала, аппроксимирующего реальный сигнал СРЧ, х - индекс массива временных равномерных выборок на интервале TM - 0, 1, 2…N, где N - число выборок, х - индекс массива выборок из 256 точек. Частоты сигнала СРЧ можно определить из соотношения: fi=biN/2πTM, i=1,2. По результатам оптимизационной процедуры имеем для этих примеров соответственно: а1=10.02, b1=0.016, c1=0.7662, f1=0.6523 Гц, ошибка равна -0.0023 Гц; а2=-0.09392, b2=0.09799, с2=-4.778, f2=3.9925 Гц, ошибка равна 0.0075 Гц. Степень совпадения результатов аппроксимации и выборки сигналов - 0.9986. Диэлектрическая проницаемость ε вычисляется по формуле (8), используя вычисленные значения f1, f2 и известное расстояние D.

Способ измерения диэлектрической проницаемости жидкости в емкости, характеризующийся тем, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону электромагнитные волны, принимают отраженные электромагнитные волны, затем выделяют сигнал разностной частоты на выходе смесителя между падающими и отраженными электромагнитными волнами, сохраняют эти данные в виде массива выборок за время периода модуляции, отличающийся тем, что аппроксимируют полученные данные суммой двух синусоид путем подбора амплитуды, частоты и фазы каждой из них до максимального совпадения с полученными данными, по частотам полученных синусоид и известному расстоянию от антенн до дна емкости определяют диэлектрическую проницаемость жидкости.
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКОСТИ В ЕМКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКОСТИ В ЕМКОСТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 276.
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
Показаны записи 71-80 из 181.
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
+ добавить свой РИД