×
20.02.2016
216.014.d0b4

СПОСОБ ФОРМИРОВАНИЯ АКТИВНОЙ p- ОБЛАСТИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть

Авторы

Правообладатели

Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к солнечной энергетике. Способ формирования активной p-области солнечных элементов включает процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl). В качестве источника диффузанта используется жидкий источник - треххлористый бор (BCl) при следующем расходе газов: кислород O=12 л/ч, азот N=380 л/ч, N+H=380 л/ч, BCl=2 л/ч, 1000 ppm. Изобретение позволяет получить боросиликатный слой из жидкого источника треххлористого бора (BCl) c обеспечением уменьшения разброса значений поверхностного сопротивления по кремниевой пластине, снижение температуры и длительности процесса. 3 пр.
Основные результаты: Способ формирования активной p-области солнечных элементов, включающий процесс диффузии бора с применением жидкого источника - треххлористого бора (BCl), отличающийся тем, что в качестве источника диффузанта используется жидкий источник - треххлористый бор (BCl) при следующем расходе газов: кислород O=12 л/ч, азот N=380 л/ч, N+H=380 л/ч, BCl=2 л/ч 1000 ppm.
Реферат Свернуть Развернуть

Изобретение относится к технологии формирования активной p+ области, в частности к способам получения боросиликатных стекол для формирования активной базовой области в производстве полупроводниковой солнечной энергетики.

Известны способы проведения процесса диффузии бора из твердого планарного жидкого и газообразного источника [1].

Недостатками этих способов является неравномерность распределения поверхностного сопротивления, высокие температуры и длительность процесса.

Целью изобретения является равномерность разброса значений поверхностного сопротивления по всей поверхности кремниевой пластины, уменьшение температуры и длительности процесса.

Поставленная цель достигается проведением процесса диффузии бора с применением газообразного источника - треххлористого бора (BCl3), при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=380 л/ч, BCl3=2 л/ч (1000 ppm). Температура процесса 900°C, длительность процесса 15±5 минут.

Сущность способа заключается в том, что на поверхности кремниевой пластины протекает реакция окисления BCl3 из-за присутствия паров воды, поэтому вместе с кислородом в газовый поток добавляют незначительное количество водорода.

Контроль измерения поверхностного сопротивления (RS) осуществляется на установке "FPP-5000". При этом поверхностное сопротивление - RS=55±5 Ом/см.

Сущность изобретения подтверждается следующими примерами.

ПРИМЕР 1: Технологический процесс диффузия бора проводят в однозонных диффузионных печах типа на установке СДОМ-3/100. Кремниевые пластины размещаются на кварцевых лодочках, расстояние между пластинами 2,4 мм. Процесс проводят при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=580 л/ч, BCl3=2 л/ч (1000 ppm). Температура процесса 1000°C, длительность процесса 25±5 минут.

Контроль измерения поверхностного сопротивления (RS) осуществляется на установке "FPP-5000".

RS=75±5 Ом/см.

ПРИМЕР 2: Способ осуществляют аналогично условию примера 1.

Процесс проводят при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=480 л/ч, BCl3=2 л/ч (1000 ppm).

Температура процесса 950°C, длительность процесса 15±5 минут.

Контроль измерения поверхностного сопротивления (RS) осуществляется на установке "FPP-5000".

RS=65±5 Ом/см.

ПРИМЕР 3: Способ осуществляют аналогично условию примера 1.

Процесс проводят при следующем расходе газов: кислород O2=12 л/ч, азот N2=380 л/ч, N2+H2=380 л/ч, BCl3=2 л/ч (1000 ppm).

Температура процесса 900°C, длительность процесса 15±5 минут.

Контроль измерения поверхностного сопротивления (RS) осуществляется на установке "FPP-5000".

RS=55±5 Ом/см.

Таким образом, предлагаемый способ по сравнению с прототипами позволяет получить боросиликатный слой из жидкого источника треххлористого бора (BCl3) при температуре, равной 900°C, и поверхностным сопротивлением RS=55±5 Ом/см, при этом обеспечивается уменьшение разброса значений поверхностного сопротивления по кремниевой пластине, снижение температуры и длительности процесса. По воспроизводимости и возможности регулирования параметров системы с источником в жидкой фазе лучше, чем системы с источником в твердой фазе. Поверхностной концентрацией можно управлять путем изменения температуры диффузии, температуры источника и расхода потока.

Литература

1. Готра З.Ю. Технология микроэлектронных устройств. М.: «Радио и связь», 1991, с. 179-180.

Источник поступления информации: Роспатент
+ добавить свой РИД